Results 1  10
of
849,400
Practical perfect hashing in nearly optimal space
 Information Systems
"... A hash function is a mapping from a key universe U to a range of integers, i.e., h: U↦→{0, 1,...,m−1}, where m is the range’s size. A perfect hash function for some set S ⊆ U is a hash function that is onetoone on S, where m≥S. A minimal perfect hash function for some set S ⊆ U is a perfect hash ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
hash function with a range of minimum size, i.e., m=S. This paper presents a construction for (minimal) perfect hash functions that combines theoretical analysis, practical performance, expected linear construction time and nearly optimal space consumption for the data structure. For n keys and m
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Practical network support for IP traceback
, 2000
"... This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denialofservice attacks and by the difficulty in tracing packets with incorrect, or “spoofed”, source ad ..."
Abstract

Cited by 666 (14 self)
 Add to MetaCart
This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denialofservice attacks and by the difficulty in tracing packets with incorrect, or “spoofed”, source addresses. In this paper we describe a general purpose traceback mechanism based on probabilistic packet marking in the network. Our approach allows a victim to identify the network path(s) traversed by attack traffic without requiring interactive operational support from Internet Service Providers (ISPs). Moreover, this traceback can be performed “postmortem ” – after an attack has completed. We present an implementation of this technology that is incrementally deployable, (mostly) backwards compatible and can be efficiently implemented using conventional technology. 1.
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Wattch: A Framework for ArchitecturalLevel Power Analysis and Optimizations
 In Proceedings of the 27th Annual International Symposium on Computer Architecture
, 2000
"... Power dissipation and thermal issues are increasingly significant in modern processors. As a result, it is crucial that power/performance tradeoffs be made more visible to chip architects and even compiler writers, in addition to circuit designers. Most existing power analysis tools achieve high ..."
Abstract

Cited by 1295 (43 self)
 Add to MetaCart
high accuracy by calculating power estimates for designs only after layout or floorplanning are complete In addition to being available only late in the design process, such tools are often quite slow, which compounds the difficulty of running them for a large space of design possibilities.
The Omega Test: a fast and practical integer programming algorithm for dependence analysis
 Communications of the ACM
, 1992
"... The Omega testi s ani nteger programmi ng algori thm that can determi ne whether a dependence exi sts between two array references, and i so, under what condi7: ns. Conventi nalwi[A m holds thati nteger programmiB techni:36 are far too expensi e to be used for dependence analysi6 except as a method ..."
Abstract

Cited by 521 (15 self)
 Add to MetaCart
The Omega testi s ani nteger programmi ng algori thm that can determi ne whether a dependence exi sts between two array references, and i so, under what condi7: ns. Conventi nalwi[A m holds thati nteger programmiB techni:36 are far too expensi e to be used for dependence analysi6 except as a method of last resort for si:8 ti ns that cannot be deci:A by si[976 methods. We present evi[77B that suggests thiwi sdomi s wrong, and that the Omega testi s competi ti ve wi th approxi mate algori thms usedi n practi ce and sui table for usei n producti on compi lers. Experi ments suggest that, for almost all programs, the average ti me requi red by the Omega test to determi ne the di recti on vectors for an array pai ri s less than 500 secs on a 12 MIPS workstati on. The Omega testi based on an extensi n of Four i0Motzki var i ble eli937 ti n (aliB: r programmiA method) toi nteger programmi ng, and has worstcase exponenti al ti me complexi ty. However, we show that for manysiB7 ti ns i whi h ...
A Practical Guide to Wavelet Analysis
, 1998
"... A practical stepbystep guide to wavelet analysis is given, with examples taken from time series of the El Nio Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finitelength t ..."
Abstract

Cited by 833 (3 self)
 Add to MetaCart
A practical stepbystep guide to wavelet analysis is given, with examples taken from time series of the El Nio Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite
Results 1  10
of
849,400