• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,011,124
Next 10 →

Stochastic Perturbation Theory

by G. W. Stewart , 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a first-order perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract - Cited by 886 (35 self) - Add to MetaCart
and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A

The particel swarm: Explosion, stability, and convergence in a multi-dimensional complex space

by Maurice Clerc, James Kennedy - IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract - Cited by 822 (10 self) - Add to MetaCart
in discrete time (the algebraic view), then progresses to the view of it in continuous time (the analytical view). A 5-dimensional depiction is developed, which completely describes the system. These analyses lead to a generalized model of the algorithm, containing a set of coefficients to control the system

Optimization Flow Control, I: Basic Algorithm and Convergence

by Steven H. Low, David E. Lapsley - IEEE/ACM TRANSACTIONS ON NETWORKING , 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract - Cited by 690 (64 self) - Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm

JFlow: Practical Mostly-Static Information Flow Control

by Andrew C. Myers - In Proc. 26th ACM Symp. on Principles of Programming Languages (POPL , 1999
"... A promising technique for protecting privacy and integrity of sensitive data is to statically check information flow within programs that manipulate the data. While previous work has proposed programming language extensions to allow this static checking, the resulting languages are too restrictive f ..."
Abstract - Cited by 579 (32 self) - Add to MetaCart
models: a decentralized label model, label polymorphism, run-time label checking, and automatic label inference. JFlow also supports many language features that have never been integrated successfully with static information flow control, including objects, subclassing, dynamic type tests, access control

Contour Tracking By Stochastic Propagation of Conditional Density

by Michael Isard, Andrew Blake , 1996
"... . In Proc. European Conf. Computer Vision, 1996, pp. 343--356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent s ..."
Abstract - Cited by 658 (24 self) - Add to MetaCart
simultaneous alternative hypotheses. Extensions to the Kalman filter to handle multiple data associations work satisfactorily in the simple case of point targets, but do not extend naturally to continuous curves. A new, stochastic algorithm is proposed here, the Condensation algorithm --- Conditional

Constrained model predictive control: Stability and optimality

by D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert - AUTOMATICA , 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract - Cited by 696 (15 self) - Add to MetaCart
and/or time-varying systems. We concentrate our attention on research dealing with stability and optimality; in these areas the subject has developed, in our opinion, to a stage where it has achieved sufficient maturity to warrant the active interest of researchers in nonlinear control. We distill

Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization

by Farid Alizadeh - SIAM Journal on Optimization , 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract - Cited by 557 (12 self) - Add to MetaCart
to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a

Particle swarm optimization

by James Kennedy, Russell Eberhart , 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract - Cited by 3535 (22 self) - Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described

Distributed Computing in Practice: The Condor Experience

by Douglas Thain, Todd Tannenbaum, Miron Livny - Concurrency and Computation: Practice and Experience , 2005
"... Since 1984, the Condor project has enabled ordinary users to do extraordinary computing. Today, the project continues to explore the social and technical problems of cooperative computing on scales ranging from the desktop to the world-wide computational grid. In this chapter, we provide the history ..."
Abstract - Cited by 542 (7 self) - Add to MetaCart
Since 1984, the Condor project has enabled ordinary users to do extraordinary computing. Today, the project continues to explore the social and technical problems of cooperative computing on scales ranging from the desktop to the world-wide computational grid. In this chapter, we provide

Internet time synchronization: The network time protocol

by D. L. Mills , 1989
"... This memo describes the Network Time Protocol (NTP) designed to distribute time information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses a returnabletime architecture in which a distributed subnet of time servers operating in a self-organizing, hierarchi ..."
Abstract - Cited by 617 (15 self) - Add to MetaCart
This memo describes the Network Time Protocol (NTP) designed to distribute time information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses a returnabletime architecture in which a distributed subnet of time servers operating in a self
Next 10 →
Results 1 - 10 of 1,011,124
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University