Results 1  10
of
761
A tutorial on support vector machines for pattern recognition
 Data Mining and Knowledge Discovery
, 1998
"... The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and nonseparable data, working through a nontrivial example in detail. We describe a mechanical analogy, and discuss when SV ..."
Abstract

Cited by 3393 (12 self)
 Add to MetaCart
large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization
Large margin methods for structured and interdependent output variables
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract

Cited by 624 (12 self)
 Add to MetaCart
Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses
Interprocedural dataflow analysis via graph reachability
, 1994
"... The paper shows how a large class of interprocedural dataflowanalysis problems can be solved precisely in polynomial time by transforming them into a special kind of graphreachability problem. The only restrictions are that the set of dataflow facts must be a finite set, and that the dataflow fun ..."
Abstract

Cited by 454 (34 self)
 Add to MetaCart
functions must distribute over the confluence operator (either union or intersection). This class of problems includes—but is not limited to—the classical separable problems (also known as “gen/kill ” or “bitvector” problems)—e.g., reaching definitions, available expressions, and live variables
Polynomial Time Approximation Schemes for Dense Instances of NPHard Problems
, 1995
"... We present a unified framework for designing polynomial time approximation schemes (PTASs) for "dense" instances of many NPhard optimization problems, including maximum cut, graph bisection, graph separation, minimum kway cut with and without specified terminals, and maximum 3satisfiabi ..."
Abstract

Cited by 189 (35 self)
 Add to MetaCart
We present a unified framework for designing polynomial time approximation schemes (PTASs) for "dense" instances of many NPhard optimization problems, including maximum cut, graph bisection, graph separation, minimum kway cut with and without specified terminals, and maximum 3
Cartesian Genetic Programming
, 2000
"... This paper presents a new form of Genetic Programming called Cartesian Genetic Programming in which a program is represented as an indexed graph. The graph is encoded in the form of a linear string of integers. The inputs or terminal set and node outputs are numbered sequentially. The node funct ..."
Abstract

Cited by 230 (59 self)
 Add to MetaCart
functions are also separately numbered. The genotype is just a list of node connections and functions. The genotype is then mapped to an indexed graph that can be executed as a program. Evolutionary algorithms are used to evolve the genotype in a symbolic regression problem (sixth order polynomial
Support vector machines: Training and applications
 A.I. MEMO 1602, MIT A. I. LAB
, 1997
"... The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and MultiLayer Perc ..."
Abstract

Cited by 223 (3 self)
 Add to MetaCart
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi
POLYNOMIAL SELECTIONS AND SEPARATION BY POLYNOMIALS
, 807
"... ABSTRACT. K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems connected with separation of nconvex function from nconcave function by a polynomial of d ..."
Abstract
 Add to MetaCart
ABSTRACT. K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems connected with separation of nconvex function from nconcave function by a polynomial
Coil sensitivity encoding for fast MRI. In:
 Proceedings of the ISMRM 6th Annual Meeting,
, 1998
"... New theoretical and practical concepts are presented for considerably enhancing the performance of magnetic resonance imaging (MRI) by means of arrays of multiple receiver coils. Sensitivity encoding (SENSE) is based on the fact that receiver sensitivity generally has an encoding effect complementa ..."
Abstract

Cited by 193 (3 self)
 Add to MetaCart
contributions from a number of positions in the full FOV need to be separated. As depicted in The key to signal separation lies in the fact that in each singlecoil image signal superposition occurs with different weights according to local coil sensitivities. Consider one pixel in the reduced FOV
Quantum vs. classical communication and computation
 Proc. 30th Ann. ACM Symp. on Theory of Computing (STOC ’98
, 1998
"... We present a simple and general simulation technique that transforms any blackbox quantum algorithm (à la Grover’s database search algorithm) to a quantum communication protocol for a related problem, in a way that fully exploits the quantum parallelism. This allows us to obtain new positive and ne ..."
Abstract

Cited by 158 (14 self)
 Add to MetaCart
and negative results. The positive results are novel quantum communication protocols that are built from nontrivial quantum algorithms via this simulation. These protocols, combined with (old and new) classical lower bounds, are shown to provide the first asymptotic separation results between the quantum
Polynomial degree vs. quantum query complexity
 Proceedings of FOCS’03
"... The degree of a polynomial representing (or approximating) a function f is a lower bound for the quantum query complexity of f. This observation has been a source of many lower bounds on quantum algorithms. It has been an open problem whether this lower bound is tight. We exhibit a function with pol ..."
Abstract

Cited by 81 (14 self)
 Add to MetaCart
The degree of a polynomial representing (or approximating) a function f is a lower bound for the quantum query complexity of f. This observation has been a source of many lower bounds on quantum algorithms. It has been an open problem whether this lower bound is tight. We exhibit a function
Results 1  10
of
761