Results 1  10
of
1,497
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include
On graph kernels: Hardness results and efficient alternatives
 IN: CONFERENCE ON LEARNING THEORY
, 2003
"... As most ‘realworld’ data is structured, research in kernel methods has begun investigating kernels for various kinds of structured data. One of the most widely used tools for modeling structured data are graphs. An interesting and important challenge is thus to investigate kernels on instances tha ..."
Abstract

Cited by 184 (6 self)
 Add to MetaCart
that are represented by graphs. So far, only very specific graphs such as trees and strings have been considered. This paper investigates kernels on labeled directed graphs with general structure. It is shown that computing a strictly positive definite graph kernel is at least as hard as solving the graph isomorphism
Multicommodity maxflow mincut theorems and their use in designing approximation algorithms
 J. ACM
, 1999
"... In this paper, we establish maxflow mincut theorems for several important classes of multicommodity flow problems. In particular, we show that for any nnode multicommodity flow problem with uniform demands, the maxflow for the problem is within an O(log n) factor of the upper bound implied by ..."
Abstract

Cited by 357 (6 self)
 Add to MetaCart
to design the first polynomialtime (polylog ntimesoptimal) approximation algorithms for wellknown NPhard optimization problems such as graph partitioning, mincut linear arrangement, crossing number, VLSI layout, and minimum feedback arc set. Applications of the flow results to path routing problems
On problems without polynomial kernels
 LECT. NOTES COMPUT. SCI
, 2007
"... Kernelization is a strong and widelyapplied technique in parameterized complexity. In a nutshell, a kernelization algorithm, or simply a kernel, is a polynomialtime transformation that transforms any given parameterized instance to an equivalent instance of the same problem, with size and parame ..."
Abstract

Cited by 143 (17 self)
 Add to MetaCart
generic lowerbound engine which allows us to show that a variety of FPT problems, fulfilling certain criteria, cannot have polynomial kernels unless the polynomial hierarchy collapses. These problems include kPath, kCycle, kExact Cycle, kShort Cheap Tour, kGraph Minor Order Test, kCutwidth, k
Polynomial Time Approximation Schemes for Dense Instances of NPHard Problems
, 1995
"... We present a unified framework for designing polynomial time approximation schemes (PTASs) for "dense" instances of many NPhard optimization problems, including maximum cut, graph bisection, graph separation, minimum kway cut with and without specified terminals, and maximum 3satisfiabi ..."
Abstract

Cited by 189 (35 self)
 Add to MetaCart
We present a unified framework for designing polynomial time approximation schemes (PTASs) for "dense" instances of many NPhard optimization problems, including maximum cut, graph bisection, graph separation, minimum kway cut with and without specified terminals, and maximum 3
Unit Disk Graph Recognition is NPHard
 COMPUTATIONAL GEOMETRY. THEORY AND APPLICATIONS
, 1993
"... Unit disk graphs are the intersection graphs of unit diameter closed disks in the plane. This paper reduces SATISFIABILITY to the problem of recognizing unit disk graphs. Equivalently, it shows that determining if a graph has sphericity 2 or less, even if the graph is planar or is known to have s ..."
Abstract

Cited by 114 (2 self)
 Add to MetaCart
Unit disk graphs are the intersection graphs of unit diameter closed disks in the plane. This paper reduces SATISFIABILITY to the problem of recognizing unit disk graphs. Equivalently, it shows that determining if a graph has sphericity 2 or less, even if the graph is planar or is known to have
Simple heuristics for unit disk graphs
 NETWORKS
, 1995
"... Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NPhard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring ..."
Abstract

Cited by 151 (6 self)
 Add to MetaCart
Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NPhard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum
PolynomialTime Approximation Schemes for Geometric Graphs
, 2001
"... A disk graph is the intersection graph of a set of disks with arbitrary diameters in the plane. For the case that the disk representation is given, we present polynomialtime approximation schemes (PTASs) for the maximum weight independent set problem (selecting disjoint disks of maximum total weigh ..."
Abstract

Cited by 102 (5 self)
 Add to MetaCart
A disk graph is the intersection graph of a set of disks with arbitrary diameters in the plane. For the case that the disk representation is given, we present polynomialtime approximation schemes (PTASs) for the maximum weight independent set problem (selecting disjoint disks of maximum total
ShortestPath Kernels on Graphs
 In Proceedings of the 2005 International Conference on Data Mining
, 2005
"... Data mining algorithms are facing the challenge to deal with an increasing number of complex objects. For graph data, a whole toolbox of data mining algorithms becomes available by defining a kernel function on instances of graphs. Graph kernels based on walks, subtrees and cycles in graphs have bee ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
been proposed so far. As a general problem, these kernels are either computationally expensive or limited in their expressiveness. We try to overcome this problem by defining expressive graph kernels which are based on paths. As the computation of all paths and longest paths in a graph is NPhard, we
Approximate Graph Coloring by Semidefinite Programming.
 In Proceedings of 35th Annual IEEE Symposium on Foundations of Computer Science,
, 1994
"... Abstract. We consider the problem of coloring kcolorable graphs with the fewest possible colors. We present a randomized polynomial time algorithm that colors a 3colorable graph on n vertices with min{O(⌬ 1/3 log 1/2 ⌬ log n), O(n 1/4 log 1/2 n)} colors where ⌬ is the maximum degree of any vertex ..."
Abstract

Cited by 210 (7 self)
 Add to MetaCart
Abstract. We consider the problem of coloring kcolorable graphs with the fewest possible colors. We present a randomized polynomial time algorithm that colors a 3colorable graph on n vertices with min{O(⌬ 1/3 log 1/2 ⌬ log n), O(n 1/4 log 1/2 n)} colors where ⌬ is the maximum degree of any
Results 1  10
of
1,497