Results 1  10
of
756,232
Pattern Vectors from the Ihara Zeta Function
"... This paper shows how to construct pattern vectors from the Ihara zeta function for the purposes of characterizing graph structures. To avoid the risk of sampling the meaningless infinities at the poles of the Ihara zeta function, we take use of the coefficients of the polynomial of the reciprocal ze ..."
Abstract
 Add to MetaCart
This paper shows how to construct pattern vectors from the Ihara zeta function for the purposes of characterizing graph structures. To avoid the risk of sampling the meaningless infinities at the poles of the Ihara zeta function, we take use of the coefficients of the polynomial of the reciprocal
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
Linear pattern matching algorithms
 IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE
, 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear ti ..."
Abstract

Cited by 549 (0 self)
 Add to MetaCart
time algorithm for obtaining a compacted version of a bitree associated with a given string is presented. With this construction as the basic tool, we indicate how to solve several pattern matching problems, including some from [4], in linear time.
Adhoc OnDemand Distance Vector Routing
 IN PROCEEDINGS OF THE 2ND IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS
, 1997
"... An adhoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. In this paper we present Adhoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such adhoc n ..."
Abstract

Cited by 3167 (15 self)
 Add to MetaCart
An adhoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. In this paper we present Adhoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such ad
Transductive Inference for Text Classification using Support Vector Machines
, 1999
"... This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimiz ..."
Abstract

Cited by 887 (4 self)
 Add to MetaCart
This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try
Knowledgebased Analysis of Microarray Gene Expression Data By Using Support Vector Machines
, 2000
"... We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of ..."
Abstract

Cited by 514 (8 self)
 Add to MetaCart
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
SEAD: Secure Efficient Distance Vector Routing for Mobile Wireless Ad Hoc Networks
, 2003
"... An ad hoc network is a collection of wireless computers (nodes), communicating among themselves over possibly multihop paths, without the help of any infrastructure such as base stations or access points. Although many previous ad hoc network routing protocols have been based in part on distance vec ..."
Abstract

Cited by 522 (8 self)
 Add to MetaCart
vector approaches, they have generally assumed a trusted environment. In this paper, we design and evaluate the Secure Efficient Ad hoc Distance vector routing protocol (SEAD), a secure ad hoc network routing protocol based on the design of the DestinationSequenced DistanceVector routing protocol
Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data
, 2000
"... Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data ..."
Abstract

Cited by 566 (1 self)
 Add to MetaCart
Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data
Results 1  10
of
756,232