Results 1  10
of
33,980
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
 Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract

Cited by 1330 (24 self)
 Add to MetaCart
determination, where the dimensionality of the parameter vector is typically not xed. This article proposes a new framework for the construction of reversible Markov chain samplers that jump between parameter subspaces of di ering dimensionality, which is exible and entirely constructive. It should therefore
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion of objects and split management, whF h keep th Mtree always balanced  severalheralvFV split alternatives are considered and experimentally evaluated. Algorithd for similarity (range and knearest neigh bors) queries are also described. Results from extensive experimentationwith a prototype system are reported, considering as th performance criteria th number of page I/O's and th number of distance computations. Th results demonstratethm th Mtree indeed extendsth domain of applicability beyond th traditional vector spaces, performs reasonably well inhE[94Kv#E44V[vh data spaces, and scales well in case of growing files. 1
Why Do Some Countries Produce So Much More Output Per Worker Than Others?
, 1998
"... Output per worker varies enormously across countries. Why? On an accounting basis, our analysis shows that differences in physical capital and educational attainment can only partially explain the variation in output per worker — we find a large amount of variation in the level of the Solow residual ..."
Abstract

Cited by 2363 (22 self)
 Add to MetaCart
Output per worker varies enormously across countries. Why? On an accounting basis, our analysis shows that differences in physical capital and educational attainment can only partially explain the variation in output per worker — we find a large amount of variation in the level of the Solow residual across countries. At a deeper level, we document that the differences in capital accumulation, productivity, and therefore output per worker are driven by differences in institutions and government policies, which we call social infrastructure. We treat social infrastructure as endogenous, determined historically by location and other factors captured in part by language.
Tropos: An AgentOriented Software Development Methodology
, 2003
"... Our goal in this paper is to introduce and motivate a methodology, called Tropos, for building agent oriented software systems. Tropos is based on two key ideas. First, the notion of agent and all related mentalistic notions (for instance goals and plans) are used in all phases of software develop ..."
Abstract

Cited by 453 (91 self)
 Add to MetaCart
Our goal in this paper is to introduce and motivate a methodology, called Tropos, for building agent oriented software systems. Tropos is based on two key ideas. First, the notion of agent and all related mentalistic notions (for instance goals and plans) are used in all phases of software development, from early analysis down to the actual implementation. Second, Tropos covers also the very early phases of requirements analysis, thus allowing for a deeper understanding of the environment where the software must operate, and of the kind of interactions that should occur between software and human agents. The methodology is illustrated with the help of a case study. The Tropos language for conceptual modeling is formalized in a metamodel described with a set of UML class diagrams.
RoadRunner: Towards Automatic Data Extraction from Large Web Sites
, 2001
"... The paper investigates techniques for extracting data from HTML sites through the use of automatically generated wrappers. To automate the wrapper generation and the data extraction process, the paper develops a novel technique to compare HTML pages and generate a wrapper based on their similarities ..."
Abstract

Cited by 395 (8 self)
 Add to MetaCart
The paper investigates techniques for extracting data from HTML sites through the use of automatically generated wrappers. To automate the wrapper generation and the data extraction process, the paper develops a novel technique to compare HTML pages and generate a wrapper based on their similarities and differences. Experimental results on reallife dataintensive Web sites confirm the feasibility of the approach.
Existence of minimal models for varieties of log general type
 J. AMER. MATH. SOC
, 2008
"... We prove that the canonical ring of a smooth projective variety is finitely generated. ..."
Abstract

Cited by 386 (34 self)
 Add to MetaCart
We prove that the canonical ring of a smooth projective variety is finitely generated.
Learning LongTerm Dependencies with Gradient Descent is Difficult
 TO APPEAR IN THE SPECIAL ISSUE ON RECURRENT NETWORKS OF THE IEEE TRANSACTIONS ON NEURAL NETWORKS
"... Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in th ..."
Abstract

Cited by 374 (35 self)
 Add to MetaCart
Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in the input/output sequences span long intervals. We showwhy gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases. These results expose a tradeoff between efficient learning by gradient descent and latching on information for long periods. Based on an understanding of this problem, alternatives to standard gradient descent are considered.
The Node Distribution of the Random Waypoint Mobility Model for Wireless Ad Hoc Networks
, 2003
"... The random waypoint model is a commonly used mobility model in the simulation of ad hoc networks. It is known that the spatial distribution of network nodes moving according to this model is, in general, nonuniform. However, a closedform expression of this distribution and an indepth investigation ..."
Abstract

Cited by 372 (11 self)
 Add to MetaCart
The random waypoint model is a commonly used mobility model in the simulation of ad hoc networks. It is known that the spatial distribution of network nodes moving according to this model is, in general, nonuniform. However, a closedform expression of this distribution and an indepth investigation is still missing. This fact impairs the accuracy of the current simulation methodology of ad hoc networks and makes it impossible to relate simulationbased performance results to corresponding analytical results. To overcome these problems, we present a detailed analytical study of the spatial node distribution generated by random waypoint mobility. More specifically, we consider a generalization of the model in which the pause time of the mobile nodes is chosen arbitrarily in each waypoint and a fraction of nodes may remain static for the entire simulation time. We show that the structure of the resulting distribution is the weighted sum of three independent components: the static, pause, and mobility component. This division enables us to understand how the models parameters influence the distribution. We derive an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area. The good quality of this approximation is validated through simulations using various settings of the mobility parameters. In summary, this article gives a fundamental understanding of the behavior of the random waypoint model.
Extending the Database Relational Model to Capture More Meaning
 ACM Transactions on Database Systems
, 1979
"... During the last three or four years several investigators have been exploring “semantic models ” for formatted databases. The intent is to capture (in a more or less formal way) more of the meaning of the data so that database design can become more systematic and the database system itself can beha ..."
Abstract

Cited by 333 (2 self)
 Add to MetaCart
During the last three or four years several investigators have been exploring “semantic models ” for formatted databases. The intent is to capture (in a more or less formal way) more of the meaning of the data so that database design can become more systematic and the database system itself can behave more intelligently. Two major thrusts are clear: (I) the search for meaningful units that are as small as possibleatomic semantics; (2) the search for meaningful units that are larger than the usual nary relationmolecular semantics. In this paper we propose extensions to the relational model to support certain atomic and molecular semantics. These extensions represent a synthesis of many ideas from the published work in semantic modeling plus the introduction of new rules for insertion, update, and deletion, as well as new algebraic operators.
Results 1  10
of
33,980