Results 1  10
of
447,729
PU Learning for Matrix Completion
 Inderjit S. Dhillon Dept of Computer Science UT Austin LowRank Bilinear Prediction
, 2015
"... In this paper, we consider the matrix completion problem when the observations are onebit measurements of some underlying matrix M, and in particular the observed samples consist only of ones and no zeros. This problem is motivated by modern applications such as recommender systems and social net ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
In this paper, we consider the matrix completion problem when the observations are onebit measurements of some underlying matrix M, and in particular the observed samples consist only of ones and no zeros. This problem is motivated by modern applications such as recommender systems and social
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture
Machine Learning in Automated Text Categorization
 ACM COMPUTING SURVEYS
, 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract

Cited by 1658 (22 self)
 Add to MetaCart
to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual
NewsWeeder: Learning to Filter Netnews
 in Proceedings of the 12th International Machine Learning Conference (ML95
, 1995
"... A significant problem in many information filtering systems is the dependence on the user for the creation and maintenance of a user profile, which describes the user's interests. NewsWeeder is a netnewsfiltering system that addresses this problem by letting the user rate his or her interest l ..."
Abstract

Cited by 555 (0 self)
 Add to MetaCart
level for each article being read (15), and then learning a user profile based on these ratings. This paper describes how NewsWeeder accomplishes this task, and examines the alternative learning methods used. The results show that a learning algorithm based on the Minimum Description Length (MDL
Text Chunking using TransformationBased Learning
, 1995
"... Eric Brill introduced transformationbased learning and showed that it can do partofspeech tagging with fairly high accuracy. The same method can be applied at a higher level of textual interpretation for locating chunks in the tagged text, including nonrecursive "baseNP" chunks. For ..."
Abstract

Cited by 509 (0 self)
 Add to MetaCart
Eric Brill introduced transformationbased learning and showed that it can do partofspeech tagging with fairly high accuracy. The same method can be applied at a higher level of textual interpretation for locating chunks in the tagged text, including nonrecursive "baseNP" chunks
A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
, 1989
"... The exact form of a gradientfollowing learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage that they do not require a precis ..."
Abstract

Cited by 529 (4 self)
 Add to MetaCart
The exact form of a gradientfollowing learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage that they do not require a
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
Results 1  10
of
447,729