Results 1  10
of
791,910
Optimizing the Sum of Linear Fractional Functions and Applications
"... The problem of optimizing the sum of m linear fractional functions (SOLF) in a xed dimension d, subject to n linear constraints, arises in a number of theoretical and applied areas. This paper presents an improved algorithm for solving the SOLF problem in 2D. A key subproblem to our solution is the ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
The problem of optimizing the sum of m linear fractional functions (SOLF) in a xed dimension d, subject to n linear constraints, arises in a number of theoretical and applied areas. This paper presents an improved algorithm for solving the SOLF problem in 2D. A key subproblem to our solution
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
Lambertian Reflectance and Linear Subspaces
, 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract

Cited by 514 (20 self)
 Add to MetaCart
the effects of Lambertian materials as the analog of a convolution. These results allow us to construct algorithms for object recognition based on linear methods as well as algorithms that use convex optimization to enforce nonnegative lighting functions. Finally, we show a simple way to enforce non
Linear pattern matching algorithms
 IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE
, 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear ti ..."
Abstract

Cited by 549 (0 self)
 Add to MetaCart
In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1848 (44 self)
 Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described, 1
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Limma: linear models for microarray data
 Bioinformatics and Computational Biology Solutions using R and Bioconductor
, 2005
"... This free opensource software implements academic research by the authors and coworkers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents ..."
Abstract

Cited by 759 (13 self)
 Add to MetaCart
This free opensource software implements academic research by the authors and coworkers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
Results 1  10
of
791,910