Results 1  10
of
1,218,557
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
 Evolutionary Computation
, 1994
"... In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about t ..."
Abstract

Cited by 524 (4 self)
 Add to MetaCart
the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Paretooptimal points, instead of a single point. Since genetic algorithms(GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a
Sorting networks and their applications
, 1968
"... To achieve high throughput rates today's computers perform several operations simultaneously. Not only are I/O operations performed concurrently with computing, but also, in multiprocessors, several computing ..."
Abstract

Cited by 660 (0 self)
 Add to MetaCart
To achieve high throughput rates today's computers perform several operations simultaneously. Not only are I/O operations performed concurrently with computing, but also, in multiprocessors, several computing
A Fast Elitist NonDominated Sorting Genetic Algorithm for MultiObjective Optimization: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) 4 computational complexity (where is the number of objectives and is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing ..."
Abstract

Cited by 634 (15 self)
 Add to MetaCart
Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) 4 computational complexity (where is the number of objectives and is the population size), (ii) nonelitism approach, and (iii) the need for specifying a
Optimal Aggregation Algorithms for Middleware
 IN PODS
, 2001
"... Assume that each object in a database has m grades, or scores, one for each of m attributes. For example, an object can have a color grade, that tells how red it is, and a shape grade, that tells how round it is. For each attribute, there is a sorted list, which lists each object and its grade under ..."
Abstract

Cited by 701 (4 self)
 Add to MetaCart
under that attribute, sorted by grade (highest grade first). There is some monotone aggregation function, or combining rule, such as min or average, that combines the individual grades to obtain an overall grade. To determine the top k objects (that have the best overall grades), the naive algorithm
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM Journal on Scientific Computing
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract

Cited by 557 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 610 (15 self)
 Add to MetaCart
to allow direct intervention of an external decision maker (DM). Finally, the MOGA is generalised further: the genetic algorithm is seen as the optimizing element of a multiobjective optimization loop, which also comprises the DM. It is the interaction between the two that leads to the determination of a
The Viterbi algorithm
 Proceedings of the IEEE
, 1973
"... vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A ..."
Abstract

Cited by 985 (3 self)
 Add to MetaCart
vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A799A804, 1964. [9] T. C. Mo, “Theory of electrodynamics in media in noninertial frames and applications, ” J. Math. Phys., vol. 11, pp. 25892610, 1970.
Parallel merge sort
 SIAM Journal of Computing
, 1988
"... Abstract. We give a parallel implementation of merge sort on a CREW PRAM that uses n processors and O(logn) time; the constant in the running time is small. We also give a more complex version of the algorithm for the EREW PRAM; it also uses n processors and O(logn) time. The constant in the runnin ..."
Abstract

Cited by 316 (3 self)
 Add to MetaCart
Abstract. We give a parallel implementation of merge sort on a CREW PRAM that uses n processors and O(logn) time; the constant in the running time is small. We also give a more complex version of the algorithm for the EREW PRAM; it also uses n processors and O(logn) time. The constant
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong
Results 1  10
of
1,218,557