• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,216,739
Next 10 →

Attention, similarity, and the identification-Categorization Relationship

by Robert M. Nosofsky , 1986
"... A unified quantitative approach to modeling subjects ' identification and categorization of multidimensional perceptual stimuli is proposed and tested. Two subjects identified and categorized the same set of perceptually confusable stimuli varying on separable dimensions. The identification dat ..."
Abstract - Cited by 663 (28 self) - Add to MetaCart
A unified quantitative approach to modeling subjects ' identification and categorization of multidimensional perceptual stimuli is proposed and tested. Two subjects identified and categorized the same set of perceptually confusable stimuli varying on separable dimensions. The identification

Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of Their Cleavage Sites

by Henrik Nielsen, Jacob Engelbrecht, Søren Brunak, Gunnar von Heijne , 1997
"... We have developed a new method for identification of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequences. The method performs significantly better than previous prediction schemes, and can easily be applied on genome-wide ..."
Abstract - Cited by 766 (17 self) - Add to MetaCart
We have developed a new method for identification of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequences. The method performs significantly better than previous prediction schemes, and can easily be applied on genome

OPTICS: Ordering Points To Identify the Clustering Structure

by Mihael Ankerst, Markus M. Breunig, Hans-peter Kriegel, Jörg Sander , 1999
"... Cluster analysis is a primary method for database mining. It is either used as a stand-alone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract - Cited by 511 (49 self) - Add to MetaCart
the intrinsic clustering structure accurately. We introduce a new algorithm for the purpose of cluster analysis which does not produce a clustering of a data set explicitly; but instead creates an augmented ordering of the database representing its density-based clustering structure. This cluster-ordering

Global Optimization with Polynomials and the Problem of Moments

by Jean B. Lasserre - SIAM Journal on Optimization , 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract - Cited by 569 (47 self) - Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear

Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors

by Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, John Hennessy - In Proceedings of the 17th Annual International Symposium on Computer Architecture , 1990
"... Scalable shared-memory multiprocessors distribute memory among the processors and use scalable interconnection networks to provide high bandwidth and low latency communication. In addition, memory accesses are cached, buffered, and pipelined to bridge the gap between the slow shared memory and the f ..."
Abstract - Cited by 735 (18 self) - Add to MetaCart
and the fast processors. Unless carefully controlled, such architectural optimizations can cause memory accesses to be executed in an order different from what the programmer expects. The set of allowable memory access orderings forms the memory consistency model or event ordering model for an architecture.

SNOPT: An SQP Algorithm For Large-Scale Constrained Optimization

by Philip E. Gill, Walter Murray, Michael A. Saunders , 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract - Cited by 582 (23 self) - Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first

Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization

by Carlos M. Fonseca, Peter J. Fleming , 1993
"... The paper describes a rank-based fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract - Cited by 610 (15 self) - Add to MetaCart
to allow direct intervention of an external decision maker (DM). Finally, the MOGA is generalised further: the genetic algorithm is seen as the optimizing element of a multiobjective optimization loop, which also comprises the DM. It is the interaction between the two that leads to the determination of a

A training algorithm for optimal margin classifiers

by Bernhard E. Boser, et al. - PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY , 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract - Cited by 1848 (44 self) - Add to MetaCart
is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leave-one-out method and the VC

The program dependence graph and its use in optimization

by Jeanne Ferrante, Karl J. Ottenstein, Joe D. Warren - ACM Transactions on Programming Languages and Systems , 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract - Cited by 989 (3 self) - Add to MetaCart
. Control dependence5 are introduced to analogously represent only the essential control flow relationships of a program. Control dependences are derived from the usual control flow graph. Many traditional optimizations operate more efficiently on the PDG. Since dependences in the PDG connect

Optimization Flow Control, I: Basic Algorithm and Convergence

by Steven H. Low, David E. Lapsley - IEEE/ACM TRANSACTIONS ON NETWORKING , 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract - Cited by 690 (64 self) - Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
Next 10 →
Results 1 - 10 of 1,216,739
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University