Results 1  10
of
175,342
Unformatted Manuscript OPTIMAL EXPANSIONS OF DISCRETETIME VOLTERRA MODELS USING LAGUERRE FUNCTIONS⋆
"... This work is concerned with the optimization of Laguerre bases for the orthonormal series expansion of discretetime Volterra models. The aim is to minimize the number of Laguerre functions associated with a given series truncation error, thus reducing the complexity of the resulting finite dimensio ..."
Abstract
 Add to MetaCart
This work is concerned with the optimization of Laguerre bases for the orthonormal series expansion of discretetime Volterra models. The aim is to minimize the number of Laguerre functions associated with a given series truncation error, thus reducing the complexity of the resulting finite
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
The Design and Use of Steerable Filters
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1991
"... Oriented filters are useful in many early vision and image processing tasks. One often needs to apply the same filter, rotated to different angles under adaptive control, or wishes to calculate the filter response at various orientations. We present an efficient architecture to synthesize filters of ..."
Abstract

Cited by 1079 (11 self)
 Add to MetaCart
Oriented filters are useful in many early vision and image processing tasks. One often needs to apply the same filter, rotated to different angles under adaptive control, or wishes to calculate the filter response at various orientations. We present an efficient architecture to synthesize filters
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
On active contour models and balloons
 CVGIP: Image
"... The use.of energyminimizing curves, known as “snakes, ” to extract features of interest in images has been introduced by Kass, Witkhr & Terzopoulos (Znt. J. Comput. Vision 1, 1987,321331). We present a model of deformation which solves some of the problems encountered with the original method. ..."
Abstract

Cited by 582 (43 self)
 Add to MetaCart
The use.of energyminimizing curves, known as “snakes, ” to extract features of interest in images has been introduced by Kass, Witkhr & Terzopoulos (Znt. J. Comput. Vision 1, 1987,321331). We present a model of deformation which solves some of the problems encountered with the original method
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical
Results 1  10
of
175,342