Results 1  10
of
461,231
Optimal sequencing by hybridization in rounds
 J. of Computational Biology
, 2002
"... Sequencing by hybridization (SBH) is a method for sequencing DNA. The Watson–Crick complementarity of DNA can be used to determine whether the DNA contains an oligonucleotide substring. A large number of oligonucleotides can be arranged on an array (SBH chip). A combinatorial method is used to const ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Sequencing by hybridization (SBH) is a method for sequencing DNA. The Watson–Crick complementarity of DNA can be used to determine whether the DNA contains an oligonucleotide substring. A large number of oligonucleotides can be arranged on an array (SBH chip). A combinatorial method is used
Mfold web server for nucleic acid folding and hybridization prediction
 Nucleic Acids Res
, 2003
"... The abbreviated name,‘mfold web server’,describes a number of closely related software applications available on the World Wide Web (WWW) for the prediction of the secondary structure of single stranded nucleic acids. The objective of this web server is to provide easy access to RNA and DNA folding ..."
Abstract

Cited by 1955 (0 self)
 Add to MetaCart
and hybridization software to the scientific community at large. By making use of universally available web GUIs (Graphical User Interfaces),the server circumvents the problem of portability of this software. Detailed output,in the form of structure plots with or without reliability information,single strand
The Theory of Hybrid Automata
, 1996
"... A hybrid automaton is a formal model for a mixed discretecontinuous system. We classify hybrid automata acoording to what questions about their behavior can be answered algorithmically. The classification reveals structure on mixed discretecontinuous state spaces that was previously studied on pur ..."
Abstract

Cited by 680 (13 self)
 Add to MetaCart
A hybrid automaton is a formal model for a mixed discretecontinuous system. We classify hybrid automata acoording to what questions about their behavior can be answered algorithmically. The classification reveals structure on mixed discretecontinuous state spaces that was previously studied
A greedy algorithm for aligning DNA sequences
 J. COMPUT. BIOL
, 2000
"... For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors from other sources, a greedy algorithm can be much faster than traditional dynamic programming approaches and yet produce an alignment that is guaranteed to be theoretically optimal. We introduce a new greedy a ..."
Abstract

Cited by 576 (16 self)
 Add to MetaCart
For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors from other sources, a greedy algorithm can be much faster than traditional dynamic programming approaches and yet produce an alignment that is guaranteed to be theoretically optimal. We introduce a new greedy
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM Journal on Scientific Computing
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract

Cited by 557 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a power
Insertion sequences
 Microbiol Mol. Biol. Rev
, 1998
"... These include: Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Downloaded from ..."
Abstract

Cited by 426 (3 self)
 Add to MetaCart
These include: Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Downloaded from
Similarity estimation techniques from rounding algorithms
 In Proc. of 34th STOC
, 2002
"... A locality sensitive hashing scheme is a distribution on a family F of hash functions operating on a collection of objects, such that for two objects x, y, Prh∈F[h(x) = h(y)] = sim(x,y), where sim(x,y) ∈ [0, 1] is some similarity function defined on the collection of objects. Such a scheme leads ..."
Abstract

Cited by 436 (6 self)
 Add to MetaCart
sensitive hashing scheme for a collection of subsets with the set similarity measure sim(A, B) = A∩B A∪B . We show that rounding algorithms for LPs and SDPs used in the context of approximation algorithms can be viewed as locality sensitive hashing schemes for several interesting collections of objects
Fast Algorithms for Mining Association Rules
, 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract

Cited by 3551 (15 self)
 Add to MetaCart
algorithms by factors ranging from three for small problems to more than an order of magnitude for large problems. We also show how the best features of the two proposed algorithms can be combined into a hybrid algorithm, called AprioriHybrid. Scaleup experiments show that AprioriHybrid scales linearly
Results 1  10
of
461,231