• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 923,264
Next 10 →

Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions

by Alexandr Andoni , Piotr Indyk , 2008
"... In this article, we give an overview of efficient algorithms for the approximate and exact nearest neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given a new query object, one can quickly return the dataset object that is most similar to the query. The ..."
Abstract - Cited by 443 (7 self) - Add to MetaCart
In this article, we give an overview of efficient algorithms for the approximate and exact nearest neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given a new query object, one can quickly return the dataset object that is most similar to the query

An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions

by Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, Angela Y. Wu - ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS , 1994
"... Consider a set S of n data points in real d-dimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract - Cited by 983 (32 self) - Add to MetaCart
positive real ffl, a data point p is a (1 + ffl)-approximate nearest neighbor of q if its distance from q is within a factor of (1 + ffl) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in R d in O(dn log n) time and O(dn) space, so that given a

Fast approximate nearest neighbors with automatic algorithm configuration

by Marius Muja, David G. Lowe - In VISAPP International Conference on Computer Vision Theory and Applications , 2009
"... nearest-neighbors search, randomized kd-trees, hierarchical k-means tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in high-dimensional spaces. There are no known exact algorithms for solving these high-dimensional problems ..."
Abstract - Cited by 448 (2 self) - Add to MetaCart
system that answers the question, “What is the fastest approximate nearest-neighbor algorithm for my data? ” Our system will take any given dataset and desired degree of precision and use these to automatically determine the best algorithm and parameter values. We also describe a new algorithm

Similarity search in high dimensions via hashing

by Aristides Gionis, Piotr Indyk, Rajeev Motwani , 1999
"... The nearest- or near-neighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over high-dimensional data, e.g., image dat ..."
Abstract - Cited by 622 (13 self) - Add to MetaCart
The nearest- or near-neighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over high-dimensional data, e.g., image

Locality-sensitive hashing scheme based on p-stable distributions

by Mayur Datar, Piotr Indyk - In SCG ’04: Proceedings of the twentieth annual symposium on Computational geometry , 2004
"... inÇÐÓ�Ò We present a novel Locality-Sensitive Hashing scheme for the Approximate Nearest Neighbor Problem underÐÔnorm, based onÔstable distributions. Our scheme improves the running time of the earlier algorithm for the case of theÐnorm. It also yields the first known provably efficient approximate ..."
Abstract - Cited by 513 (10 self) - Add to MetaCart
inÇÐÓ�Ò We present a novel Locality-Sensitive Hashing scheme for the Approximate Nearest Neighbor Problem underÐÔnorm, based onÔstable distributions. Our scheme improves the running time of the earlier algorithm for the case of theÐnorm. It also yields the first known provably efficient approximate

Nonlinear Approximation

by Ronald A. DeVore - ACTA NUMERICA , 1998
"... ..."
Abstract - Cited by 970 (40 self) - Add to MetaCart
Abstract not found

A Guided Tour to Approximate String Matching

by Gonzalo Navarro - ACM COMPUTING SURVEYS , 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract - Cited by 584 (38 self) - Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining the problem and its relevance, its statistical behavior, its history and current developments, and the central ideas of the algorithms and their complexities. We present a number of experiments to compare the performance of the different algorithms and show which are the best choices according to each case. We conclude with some future work directions and open problems.

Greedy Function Approximation: A Gradient Boosting Machine

by Jerome H. Friedman - Annals of Statistics , 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract - Cited by 951 (12 self) - Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed

Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?

by Emmanuel J. Candès , Terence Tao , 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract - Cited by 1513 (20 self) - Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a power-law (or if the coefficient sequence of f in a fixed basis decays like a power-law), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude |f | (1) ≥ |f | (2) ≥... ≥ |f | (N), and define the weak-ℓp ball as the class F of those elements whose entries obey the power decay law |f | (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are N-dimensional Gaussian

Particle swarm optimization

by James Kennedy, Russell Eberhart , 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract - Cited by 3535 (22 self) - Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described
Next 10 →
Results 1 - 10 of 923,264
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2018 The Pennsylvania State University