Results 1  10
of
136,179
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 989 (3 self)
 Add to MetaCart
. Control dependence5 are introduced to analogously represent only the essential control flow relationships of a program. Control dependences are derived from the usual control flow graph. Many traditional optimizations operate more efficiently on the PDG. Since dependences in the PDG connect
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes
Does Social Capital Have an Economic Payoff? A CrossCountry Investigation
 Quarterly Journal of Economics
, 1997
"... This paper presents evidence that “social capital ” matters for measurable economic performance, using indicators of trust and civic norms from the World Values Surveys for a sample of 29 market economies. Memberships in formal groups—Putnam’s measure of social capital—is not associated with trust o ..."
Abstract

Cited by 1335 (8 self)
 Add to MetaCart
This paper presents evidence that “social capital ” matters for measurable economic performance, using indicators of trust and civic norms from the World Values Surveys for a sample of 29 market economies. Memberships in formal groups—Putnam’s measure of social capital—is not associated with trust
Approximate Polytope Membership Queries
, 2010
"... Convex polytopes are central to computational and combinatorial geometry. In this paper, we consider an approximate version of a fundamental geometric search problem, polytope membership queries. Given a convex polytope P in R d, presented as the intersection of halfspaces, the objective is to prepr ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Convex polytopes are central to computational and combinatorial geometry. In this paper, we consider an approximate version of a fundamental geometric search problem, polytope membership queries. Given a convex polytope P in R d, presented as the intersection of halfspaces, the objective
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a
Mean shift, mode seeking, and clustering
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... AbstractMean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some kmeans like clustering algorithms its special cases. It is shown that mean shift is a modeseeki ..."
Abstract

Cited by 620 (0 self)
 Add to MetaCart
in clustering and Hough transform are demonstrated. Mean shift is also considered as an evolutionary strategy that performs multistart global optimization. Index TermsMean shift, gradient descent, global optimization, Hough transform, cluster analysis, kmeans clustering. I.
Results 1  10
of
136,179