Results 1  10
of
1,166,498
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11807 (17 self)
 Add to MetaCart
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value
On twogrid convergence estimates
 Numer. Linear Algebra Appl
"... Abstract. We derive a new representation for the exact convergence factor of the classical twolevel and twogrid preconditioners. Based on this result, we establish necessary and sufficient conditions for constructing the components of efficient AMG (algebraic multigrid) methods. The relation of th ..."
Abstract

Cited by 25 (7 self)
 Add to MetaCart
of the sharp estimate to the classical twolevel hierarchical basis methods is discussed as well. Lastly, as an application, we give an optimal twogrid convergence proof of a purely algebraic “window”AMG method. twogrid, two–level methods, convergence, sharp estimates, algebraic multigrid 1.
Algebraic analysis of twogrid methods: the nonsymmetric case
, 2008
"... Twogrid methods constitute the building blocks of multigrid methods, which are among the most efficient solution techniques for solving large sparse systems of linear equations. In this paper, an analysis is developed that does not require any symmetry property. Several equivalent expressions are p ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
are provided that characterize all eigenvalues of the iteration matrix. In the symmetric positive definite case, these expressions reproduce the sharp twogrid convergence estimate obtained by Falgout, Vassilevski and Zikatanov [Numer. Lin. Alg. Appl., 12 (2005), pp. 471–494], and also previous algebraic
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly timevarying environment.
Convergent Treereweighted Message Passing for Energy Minimization
 ACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), 2006. ABSTRACTACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI)
, 2006
"... Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33] treereweighted maxproduct message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy ..."
Abstract

Cited by 491 (16 self)
 Add to MetaCart
on the energy. However, the algorithm is not guaranteed to increase this bound it may actually go down. In addition, TRW does not always converge. We develop a modification of this algorithm which we call sequential treereweighted message passing. Its main property is that the bound is guaranteed
Reopening the Convergence Debate: A new look at crosscountry growth empirics
 JOURNAL OF ECONOMIC GROWTH
, 1996
"... ..."
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas
Bayesian Density Estimation and Inference Using Mixtures
 Journal of the American Statistical Association
, 1994
"... We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation, and are exemplified by special cases where data are modelled as a sample from mixtures of normal distributions. Efficien ..."
Abstract

Cited by 652 (18 self)
 Add to MetaCart
on the numbers of components. Also, convergence results are established for a general class of normal mixture models. Keywords: Kernel estimation; Mixtures of Dirichlet processes; Multimodality; Normal mixtures; Posterior sampling; Smoothing parameter estimation * Michael D. Escobar is Assistant Professor
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Results 1  10
of
1,166,498