Results 1  10
of
302,562
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Maximum Likelihood Linear Transformations for HMMBased Speech Recognition
 Computer Speech and Language
, 1998
"... This paper examines the application of linear transformations for speaker and environmental adaptation in an HMMbased speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Other than in the form of a simple bias ..."
Abstract

Cited by 538 (65 self)
 Add to MetaCart
This paper examines the application of linear transformations for speaker and environmental adaptation in an HMMbased speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Other than in the form of a simple
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection
Financial Dependence and Growth
 American Economic Review
, 1998
"... This paper examines whether nancial development facilitates economic growth by scrutinizing one rationale for such a relationship; that nancial development reduces the costs of external nance to rms. Speci cally, we ask whether industrial sectors that are relatively more in need of external nance de ..."
Abstract

Cited by 1043 (29 self)
 Add to MetaCart
This paper examines whether nancial development facilitates economic growth by scrutinizing one rationale for such a relationship; that nancial development reduces the costs of external nance to rms. Speci cally, we ask whether industrial sectors that are relatively more in need of external nance
Linguistic Complexity: Locality of Syntactic Dependencies
 COGNITION
, 1998
"... This paper proposes a new theory of the relationship between the sentence processing mechanism and the available computational resources. This theory  the Syntactic Prediction Locality Theory (SPLT)  has two components: an integration cost component and a component for the memory cost associa ..."
Abstract

Cited by 486 (31 self)
 Add to MetaCart
This paper proposes a new theory of the relationship between the sentence processing mechanism and the available computational resources. This theory  the Syntactic Prediction Locality Theory (SPLT)  has two components: an integration cost component and a component for the memory cost
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
A new learning algorithm for blind signal separation

, 1996
"... A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract

Cited by 614 (80 self)
 Add to MetaCart
A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 886 (35 self)
 Add to MetaCart
. In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation
, 2002
"... There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is ..."
Abstract

Cited by 699 (9 self)
 Add to MetaCart
) is introduced to aid in intensitydependent normalization. Lastly, to allow for comparisons of expression levels across slides, a robust method based on maximum likelihood estimation is proposed to adjust for scale differences among slides.
Gapped Blast and PsiBlast: a new generation of protein database search programs
 NUCLEIC ACIDS RESEARCH
, 1997
"... The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while ..."
Abstract

Cited by 8393 (85 self)
 Add to MetaCart
for automatically combining statistically significant alignments produced by BLAST into a positionspecific score matrix, and searching the database using this matrix. The resulting PositionSpecific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many
Results 1  10
of
302,562