Results 1  10
of
238,678
Blind Signal Separation: Statistical Principles
, 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract

Cited by 522 (4 self)
 Add to MetaCart
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption
Blind Beamforming for Non Gaussian Signals
 IEE ProceedingsF
, 1993
"... This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray mani ..."
Abstract

Cited by 704 (31 self)
 Add to MetaCart
This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly timevarying environment.
Equivariant Adaptive Source Separation
 IEEE Trans. on Signal Processing
, 1996
"... Source separation consists in recovering a set of independent signals when only mixtures with unknown coefficients are observed. This paper introduces a class of adaptive algorithms for source separation which implements an adaptive version of equivariant estimation and is henceforth called EASI (Eq ..."
Abstract

Cited by 448 (9 self)
 Add to MetaCart
Source separation consists in recovering a set of independent signals when only mixtures with unknown coefficients are observed. This paper introduces a class of adaptive algorithms for source separation which implements an adaptive version of equivariant estimation and is henceforth called EASI
On the Convergence of Normalized Constant Modulus Algorithms for Blind Equalization
 Proc. DSP International Conference on Digital Signal Processing
, 1993
"... One of the most known classes of algorithms for blind equalization is the socalled class of Constant Modulus Algorithms (CMA's) [1], [2]. These adaptive algorithms use an instantaneous gradientsearch procedure similar to that of the LMS algorithm in order to minimize a stochastic criterion th ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
One of the most known classes of algorithms for blind equalization is the socalled class of Constant Modulus Algorithms (CMA's) [1], [2]. These adaptive algorithms use an instantaneous gradientsearch procedure similar to that of the LMS algorithm in order to minimize a stochastic criterion
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
A simple distributed autonomous power control algorithm and its convergence
 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
, 1993
"... For wireless cellular communication systems, one seeks a simple effective means of power control of signals associated with randomly dispersed users that are reusing a single channel in different cells. By effecting the lowest interference environment, in meeting a required minimum signaltointerf ..."
Abstract

Cited by 472 (3 self)
 Add to MetaCart
For wireless cellular communication systems, one seeks a simple effective means of power control of signals associated with randomly dispersed users that are reusing a single channel in different cells. By effecting the lowest interference environment, in meeting a required minimum signal
An Adaptive EnergyEfficient MAC Protocol for Wireless Sensor Networks
 SENSYS'03
, 2003
"... In this paper we describe TMAC, a contentionbased Medium Access Control protocol for wireless sensor networks. Applications for these networks have some characteristics (low message rate, insensitivity to latency) that can be exploited to reduce energy consumption by introducing an active/sleep du ..."
Abstract

Cited by 526 (13 self)
 Add to MetaCart
/sleep duty cycle. To handle load variations in time and location TMAC introduces an adaptive duty cycle in a novel way: by dynamically ending the active part of it. This reduces the amount of energy wasted on idle listening, in which nodes wait for potentially incoming messages, while still maintaining a
An Analytical Constant Modulus Algorithm
, 1996
"... Iterative constant modulus algorithms such as Godard and CMA have been used to blindly separate a superposition of cochannel constant modulus (CM) signals impinging on an antenna array. These algorithms have certain deficiencies in the context of convergence to local minima and the retrieval of all ..."
Abstract

Cited by 165 (35 self)
 Add to MetaCart
Iterative constant modulus algorithms such as Godard and CMA have been used to blindly separate a superposition of cochannel constant modulus (CM) signals impinging on an antenna array. These algorithms have certain deficiencies in the context of convergence to local minima and the retrieval
KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract

Cited by 930 (41 self)
 Add to MetaCart
by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. Both of these techniques have been considered, but this topic is largely still open. In this paper we propose a novel algorithm for adapting dictionaries in order to achieve sparse
Results 1  10
of
238,678