Results 1  10
of
99,987
Parameterized Complexity
, 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract

Cited by 1218 (75 self)
 Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs
Algorithmic aspect of ktuple domination in graphs
 Taiwanese J. Math
"... Abstract. In a graph G, a vertex is said to dominate itself and all of its neighbors. For a fixed positive integer k, the ktuple domination problem is to find a minimum sized vertex subset such that every vertex in the graph is dominated by at least k vertices in this set. The present paper studies ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
Abstract. In a graph G, a vertex is said to dominate itself and all of its neighbors. For a fixed positive integer k, the ktuple domination problem is to find a minimum sized vertex subset such that every vertex in the graph is dominated by at least k vertices in this set. The present paper
kTuple Total Domination in Supergeneralized Petersen Graphs
"... Abstract. Total domination number of a graph without isolated vertex is the minimum cardinality of a total dominating set, that is, a set of vertices such that every vertex of the graph is adjacent to at least one vertex of the set. Henning and Kazemi in [4] extended this definition as follows: for ..."
Abstract
 Add to MetaCart
: for any positive integer k, and any graph G with minimum degreek, a set D of vertices is a ktuple total dominating set of G if each vertex of G is adjacent to at least k vertices in D. The ktuple total domination number γ×k,t(G) of G is the minimum cardinality of a ktuple total dominating set of G
Efficiently computing static single assignment form and the control dependence graph
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1991
"... In optimizing compilers, data structure choices directly influence the power and efficiency of practical program optimization. A poor choice of data structure can inhibit optimization or slow compilation to the point that advanced optimization features become undesirable. Recently, static single ass ..."
Abstract

Cited by 997 (8 self)
 Add to MetaCart
, the difficulty of their construction and their potential size have discouraged their use. We present new algorithms that efficiently compute these data structures for arbitrary control flow graphs. The algorithms use dominance frontiers, a new concept that may have other applications. We also give analytical
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
An Experimental Comparison of MinCut/MaxFlow Algorithms for Energy Minimization in Vision
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2001
"... After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time compl ..."
Abstract

Cited by 1311 (54 self)
 Add to MetaCart
After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time
Improved upper bounds for the ktuple domination number
 AUSTRALASIAN JOURNAL OF COMBINATORICS VOLUME 41 (2008), PAGES 257–261
, 2008
"... We improve the generalized upper bound for the ktuple domination number given in [A. Gagarin and V.E. Zverovich, A generalized upper bound for the ktuple domination number, Discrete Math. 308 no. 5–6 (2008), 880–885]. Precisely, we show that for any graph G, when k = 3, or k = 4 and d ≤ 3.2, γ×k(G ..."
Abstract
 Add to MetaCart
We improve the generalized upper bound for the ktuple domination number given in [A. Gagarin and V.E. Zverovich, A generalized upper bound for the ktuple domination number, Discrete Math. 308 no. 5–6 (2008), 880–885]. Precisely, we show that for any graph G, when k = 3, or k = 4 and d ≤ 3.2, γ×k
Results 1  10
of
99,987