Results 1  10
of
2,389,283
On the Binary Projective Codes with Dimension 6
"... Abstract — All binary projective codes of dimension up to 6 are classified. Information about the number of the codes with different minimum distances and different orders of automorphism groups is given. Index Terms — projective codes, code equivalence, canonical labelling, automorphism group, self ..."
Abstract
 Add to MetaCart
Abstract — All binary projective codes of dimension up to 6 are classified. Information about the number of the codes with different minimum distances and different orders of automorphism groups is given. Index Terms — projective codes, code equivalence, canonical labelling, automorphism group
Iterative decoding of binary block and convolutional codes
 IEEE Trans. Inform. Theory
, 1996
"... Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the ..."
Abstract

Cited by 600 (43 self)
 Add to MetaCart
: the soft channel and a priori inputs, and the extrinsic value. The extrinsic value is used as an a priori value for the next iteration. Decoding algorithms in the loglikelihood domain are given not only for convolutional codes hut also for any linear binary systematic block code. The iteration
Valgrind: A framework for heavyweight dynamic binary instrumentation
 In Proceedings of the 2007 Programming Language Design and Implementation Conference
, 2007
"... Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI ha ..."
Abstract

Cited by 545 (5 self)
 Add to MetaCart
Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract

Cited by 560 (20 self)
 Add to MetaCart
is compared against all others, or in which all pairs of classes are compared to each other, or in which output codes with errorcorrecting properties are used. We propose a general method for combining the classifiers generated on the binary problems, and we prove a general empirical multiclass loss bound
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
. The decoding of both codes can be tackled with a practical sumproduct algorithm. We prove that these codes are "very good," in that sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit. This result holds not only for the binarysymmetric channel
Understanding Code Mobility
 IEEE COMPUTER SCIENCE PRESS
, 1998
"... The technologies, architectures, and methodologies traditionally used to develop distributed applications exhibit a variety of limitations and drawbacks when applied to large scale distributed settings (e.g., the Internet). In particular, they fail in providing the desired degree of configurability, ..."
Abstract

Cited by 549 (34 self)
 Add to MetaCart
conceptual framework for understanding code mobility. The framework is centered around a classification that introduces three dimensions: technologies, design paradigms, and applications. The contribution of the paper is twofold. First, it provides a set of terms and concepts to understand and compare
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
learning problems include direct application of multiclass algorithms such as the decisiontree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed
Defining Virtual Reality: Dimensions Determining Telepresence
 JOURNAL OF COMMUNICATION
, 1992
"... Virtual reality (VR) is typically defined in terms of technological hardware. This paper attempts to cast a new, variablebased definition of virtual reality that can be used to classify virtual reality in relation to other media. The defintion of virtual reality is based on concepts of "presen ..."
Abstract

Cited by 534 (0 self)
 Add to MetaCart
;presence" and "telepresence," which refer to the sense of being in an environment, generated by natural or mediated means, respectively. Two technological dimensions that contribute to telepresence, vividness and interactivity, are discussed. A variety of media are classified according to these dimensions
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Results 1  10
of
2,389,283