Results 1  10
of
582,894
On the Power of Polynomial BitReductions
 Proceedings of the 1993 Structure in Complexity Theory conference
, 1993
"... We examine the notion of definability of complexity classes via leaf languages, introduced by Bovet, Crescenzi and Silvestri (Theoretical Computer Science 104 (1992), 263283). For a nondeterministic polynomial time Turing machine M and an input string x, the leaf string of M on x is the sequence ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We examine the notion of definability of complexity classes via leaf languages, introduced by Bovet, Crescenzi and Silvestri (Theoretical Computer Science 104 (1992), 263283). For a nondeterministic polynomial time Turing machine M and an input string x, the leaf string of M on x is the sequence
On the Power of Polynomial Time BitReductions (Extended Abstract)
"... For a nondeterministic polynomial time Turing machine M and an input string x, the leaf string of M on x is the 01sequence of leafvalues (0 ¸ reject, 1 ¸ accept) of the computation tree of M with input x. The set A is said to be bitreducible to B if there exists an M as above such that for every ..."
Abstract
 Add to MetaCart
For a nondeterministic polynomial time Turing machine M and an input string x, the leaf string of M on x is the 01sequence of leafvalues (0 ¸ reject, 1 ¸ accept) of the computation tree of M with input x. The set A is said to be bitreducible to B if there exists an M as above
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
The Askeyscheme of hypergeometric orthogonal polynomials and its qanalogue
, 1998
"... We list the socalled Askeyscheme of hypergeometric orthogonal polynomials and we give a q analogue of this scheme containing basic hypergeometric orthogonal polynomials. In chapter 1 we give the definition, the orthogonality relation, the three term recurrence relation, the second order di#erent ..."
Abstract

Cited by 580 (6 self)
 Add to MetaCart
We list the socalled Askeyscheme of hypergeometric orthogonal polynomials and we give a q analogue of this scheme containing basic hypergeometric orthogonal polynomials. In chapter 1 we give the definition, the orthogonality relation, the three term recurrence relation, the second order di
RealTime Dynamic Voltage Scaling for LowPower Embedded Operating Systems
, 2001
"... In recent years, there has been a rapid and wide spread of nontraditional computing platforms, especially mobile and portable computing devices. As applications become increasingly sophisticated and processing power increases, the most serious limitation on these devices is the available battery lif ..."
Abstract

Cited by 498 (4 self)
 Add to MetaCart
In recent years, there has been a rapid and wide spread of nontraditional computing platforms, especially mobile and portable computing devices. As applications become increasingly sophisticated and processing power increases, the most serious limitation on these devices is the available battery
LowPower CMOS Digital Design
 JOURNAL OF SOLIDSTATE CIRCUITS. VOL 27, NO 4. APRIL 1992 413
, 1992
"... Motivated by emerging batteryoperated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for lowpower operation are shown which use the ..."
Abstract

Cited by 570 (20 self)
 Add to MetaCart
Motivated by emerging batteryoperated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for lowpower operation are shown which use
Wattch: A Framework for ArchitecturalLevel Power Analysis and Optimizations
 In Proceedings of the 27th Annual International Symposium on Computer Architecture
, 2000
"... Power dissipation and thermal issues are increasingly significant in modern processors. As a result, it is crucial that power/performance tradeoffs be made more visible to chip architects and even compiler writers, in addition to circuit designers. Most existing power analysis tools achieve high ..."
Abstract

Cited by 1295 (43 self)
 Add to MetaCart
Power dissipation and thermal issues are increasingly significant in modern processors. As a result, it is crucial that power/performance tradeoffs be made more visible to chip architects and even compiler writers, in addition to circuit designers. Most existing power analysis tools achieve
Lag length selection and the construction of unit root tests with good size and power
 Econometrica
, 2001
"... It is widely known that when there are errors with a movingaverage root close to −1, a high order augmented autoregression is necessary for unit root tests to have good size, but that information criteria such as the AIC and the BIC tend to select a truncation lag (k) that is very small. We conside ..."
Abstract

Cited by 534 (14 self)
 Add to MetaCart
(1996). We also extend the M tests developed in Perron and Ng (1996) to allow for GLS detrending of the data. The MIC along with GLS detrended data yield a set of tests with desirable size and power properties.
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
Results 1  10
of
582,894