Results 1  10
of
2,070,145
On the Effects of Dimensionality on Data Analysis With Neural Networks
, 2003
"... Modern data analysis often faces highdimensional data. ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
Modern data analysis often faces highdimensional data.
Evolving Neural Networks through Augmenting Topologies
 Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning task ..."
Abstract

Cited by 524 (113 self)
 Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning
Complete discrete 2D Gabor transforms by neural networks for image analysis and compression
, 1988
"... AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which provide ..."
Abstract

Cited by 475 (8 self)
 Add to MetaCart
AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which
Imagenet classification with deep convolutional neural networks
 Advances in Neural Information Processing Systems
"... We trained a large, deep convolutional neural network to classify the 1.2 million highresolution images in the ImageNet LSVRC2010 contest into the 1000 different classes. On the test data, we achieved top1 and top5 error rates of 37.5% and 17.0 % which is considerably better than the previous st ..."
Abstract

Cited by 917 (11 self)
 Add to MetaCart
We trained a large, deep convolutional neural network to classify the 1.2 million highresolution images in the ImageNet LSVRC2010 contest into the 1000 different classes. On the test data, we achieved top1 and top5 error rates of 37.5% and 17.0 % which is considerably better than the previous
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2241 (104 self)
 Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation
The sources and consequences of embeddedness for the economic performance of organizations: The network effect
 American Sociological Review
, 1996
"... In this paper, I attempt to advance the concept of embeddedness beyond the level of a programmatic statement by developing a formulation that specifies how embeddedness and network structure affect economic action. On the basis of existing theory and original ethnographies of 23 apparel firms, I dev ..."
Abstract

Cited by 709 (8 self)
 Add to MetaCart
develop a systematic scheme that more fully demarcates the unique features, functions, and sources of embeddedness. From this scheme, I derive a set of refutable implications and test their plausibility, using another data set on the network ties of all better dress apparel firms in the New York apparel
Application of Phylogenetic Networks in Evolutionary Studies
 SUBMITTED TO MBE 2005
, 2005
"... The evolutionary history of a set of taxa is usually represented by a phylogenetic tree, and this model has greatly facilitated the discussion and testing of hypotheses. However, it is well known that more complex evolutionary scenarios are poorly described by such models. Further, even when evoluti ..."
Abstract

Cited by 867 (15 self)
 Add to MetaCart
evolution proceeds in a treelike manner, analysis of the data may not be best served by using methods that enforce a tree structure, but rather by a richer visualization of the data to evaluate its properties, at least as an essential first step. Thus, phylogenetic networks should be employed when
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 788 (23 self)
 Add to MetaCart
restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly
Probabilistic Principal Component Analysis
 Journal of the Royal Statistical Society, Series B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 703 (5 self)
 Add to MetaCart
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation
Parallel Networks that Learn to Pronounce English Text
 COMPLEX SYSTEMS
, 1987
"... This paper describes NETtalk, a class of massivelyparallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed h ..."
Abstract

Cited by 548 (5 self)
 Add to MetaCart
is essential. (iv) Relearning after damage is much faster than learning during the original training. (v) Distributed or spaced practice is more effective for longterm retention than massed practice. Network models can be constructed that have the same performance and learning characteristics on a particular
Results 1  10
of
2,070,145