Results 1  10
of
1,022,757
Randomization and Derandomization in SpaceBounded Computation
 In Proceedings of the 11th Annual IEEE Conference on Computational Complexity
, 1996
"... This is a survey of spacebounded probabilistic computation, summarizing the present state of knowledge about the relationships between the various complexity classes associated with such computation. The survey especially emphasizes recent progress in the construction of pseudorandom generators tha ..."
Abstract

Cited by 40 (0 self)
 Add to MetaCart
This is a survey of spacebounded probabilistic computation, summarizing the present state of knowledge about the relationships between the various complexity classes associated with such computation. The survey especially emphasizes recent progress in the construction of pseudorandom generators
Lecture SpaceBounded Derandomization
"... We now discuss derandomization of spacebounded algorithms. Here nontrivial results can be shown without making any unproven assumptions, in contrast to what is currently known for derandomizing timebounded algorithms. We show first that1 BPL ⊆ SPACE(log 2 n) and then improve the analysis and show ..."
Abstract
 Add to MetaCart
We now discuss derandomization of spacebounded algorithms. Here nontrivial results can be shown without making any unproven assumptions, in contrast to what is currently known for derandomizing timebounded algorithms. We show first that1 BPL ⊆ SPACE(log 2 n) and then improve the analysis
Pseudorandom generators for spacebounded computation
 Combinatorica
, 1992
"... Pseudorandom generators are constructed which convert O(SlogR) truly random bits to R bits that appear random to any algorithm that runs in SPACE(S). In particular, any randomized polynomial time algorithm that runs in space S can be simulated using only O(Slogn) random bits. An application of these ..."
Abstract

Cited by 245 (11 self)
 Add to MetaCart
Pseudorandom generators are constructed which convert O(SlogR) truly random bits to R bits that appear random to any algorithm that runs in SPACE(S). In particular, any randomized polynomial time algorithm that runs in space S can be simulated using only O(Slogn) random bits. An application
Scheduling Multithreaded Computations by Work Stealing
, 1994
"... This paper studies the problem of efficiently scheduling fully strict (i.e., wellstructured) multithreaded computations on parallel computers. A popular and practical method of scheduling this kind of dynamic MIMDstyle computation is “work stealing," in which processors needing work steal com ..."
Abstract

Cited by 572 (43 self)
 Add to MetaCart
is Tp = O(TI/P + Tm), where TI is the minimum serial ezecution time of the multithreaded computation and T, is the minimum ezecution time with an infinite number of processors. Moreover, the space Sp required by the execution satisfies Sp 5 SIP. We also show that the ezpected total communication
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
The Protection of Information in Computer Systems
, 1975
"... This tutorial paper explores the mechanics of protecting computerstored information from unauthorized use or modification. It concentrates on those architectural structureswhether hardware or softwarethat are necessary to support information protection. The paper develops in three main sections ..."
Abstract

Cited by 815 (2 self)
 Add to MetaCart
This tutorial paper explores the mechanics of protecting computerstored information from unauthorized use or modification. It concentrates on those architectural structureswhether hardware or softwarethat are necessary to support information protection. The paper develops in three main
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2837 (11 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a
Distributed Computing in Practice: The Condor Experience
 Concurrency and Computation: Practice and Experience
, 2005
"... Since 1984, the Condor project has enabled ordinary users to do extraordinary computing. Today, the project continues to explore the social and technical problems of cooperative computing on scales ranging from the desktop to the worldwide computational grid. In this chapter, we provide the history ..."
Abstract

Cited by 542 (7 self)
 Add to MetaCart
Since 1984, the Condor project has enabled ordinary users to do extraordinary computing. Today, the project continues to explore the social and technical problems of cooperative computing on scales ranging from the desktop to the worldwide computational grid. In this chapter, we provide
A computational approach to edge detection
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1986
"... AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal ..."
Abstract

Cited by 4621 (0 self)
 Add to MetaCart
AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal
Formalising trust as a computational concept
, 1994
"... Trust is a judgement of unquestionable utility — as humans we use it every day of our lives. However, trust has suffered from an imperfect understanding, a plethora of definitions, and informal use in the literature and in everyday life. It is common to say “I trust you, ” but what does that mean? T ..."
Abstract

Cited by 518 (5 self)
 Add to MetaCart
Trust is a judgement of unquestionable utility — as humans we use it every day of our lives. However, trust has suffered from an imperfect understanding, a plethora of definitions, and informal use in the literature and in everyday life. It is common to say “I trust you, ” but what does that mean? This thesis provides a clarification of trust. We present a formalism for trust which provides us with a tool for precise discussion. The formalism is implementable: it can be embedded in an artificial agent, enabling the agent to make trustbased decisions. Its applicability in the domain of Distributed Artificial Intelligence (DAI) is raised. The thesis presents a testbed populated by simple trusting agents which substantiates the utility of the formalism. The formalism provides a step in the direction of a proper understanding and definition of human trust. A contribution of the thesis is its detailed exploration of the possibilities of future work in the area. Summary 1. Overview This thesis presents an overview of trust as a social phenomenon and discusses it formally. It argues that trust is: • A means for understanding and adapting to the complexity of the environment. • A means of providing added robustness to independent agents. • A useful judgement in the light of experience of the behaviour of others. • Applicable to inanimate others. The thesis argues these points from the point of view of artificial agents. Trust in an artificial agent is a means of providing an additional tool for the consideration of other agents and the environment in which it exists. Moreover, a formalisation of trust enables the embedding of the concept into an artificial agent. This has been done, and is documented in the thesis. 2. Exposition There are places in the thesis where it is necessary to give a broad outline before going deeper. In consequence it may seem that the subject is not receiving a thorough treatment, or that too much is being discussed at one time! (This is particularly apparent in the first and second chapters.) To present a thorough understanding of trust, we have proceeded breadth first in the introductory chapters. Chapter 3 expands, depth first, presenting critical views of established researchers.
Results 1  10
of
1,022,757