Results 1  10
of
1,483
Automatic verification of finitestate concurrent systems using temporal logic specifications
 ACM Transactions on Programming Languages and Systems
, 1986
"... We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent ..."
Abstract

Cited by 1388 (62 self)
 Add to MetaCart
We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract

Cited by 3252 (70 self)
 Add to MetaCart
We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type
Symbolic Model Checking: 10^20 States and Beyond
, 1992
"... Many different methods have been devised for automatically verifying finite state systems by examining stategraph models of system behavior. These methods all depend on decision procedures that explicitly represent the state space using a list or a table that grows in proportion to the number of st ..."
Abstract

Cited by 758 (41 self)
 Add to MetaCart
Binary Decision Diagrams (Bryant, R. E., 1986, IEEE Trans. Comput. C35) to represent relations and formulas. We then show how our new MuCalculus model checking algorithm can be used to derive efficient decision procedures for CTL model checking, satistiability of lineartime temporal logic formulas
Using Temporal Logics to Express Search Control Knowledge for Planning
 ARTIFICIAL INTELLIGENCE
, 1999
"... Over the years increasingly sophisticated planning algorithms have been developed. These have made for more efficient planners, but unfortunately these planners still suffer from combinatorial complexity even in simple domains. Theoretical results demonstrate that planning is in the worst case in ..."
Abstract

Cited by 330 (15 self)
 Add to MetaCart
Over the years increasingly sophisticated planning algorithms have been developed. These have made for more efficient planners, but unfortunately these planners still suffer from combinatorial complexity even in simple domains. Theoretical results demonstrate that planning is in the worst case
A temporal logic for reasoning about processes and plans
 Cognitive Science, 6:101 { 155
, 1982
"... Much previous work in artificial intelligence has neglected representing time in all its complexity. In particular, it has neglected continuous change and the indeterminacy of the future. To rectify this, I have developed a firstorder temporal logic, in which it is possible to name and prove thing ..."
Abstract

Cited by 308 (3 self)
 Add to MetaCart
Much previous work in artificial intelligence has neglected representing time in all its complexity. In particular, it has neglected continuous change and the indeterminacy of the future. To rectify this, I have developed a firstorder temporal logic, in which it is possible to name and prove
An AutomataTheoretic Approach to BranchingTime Model Checking
 JOURNAL OF THE ACM
, 1998
"... Translating linear temporal logic formulas to automata has proven to be an effective approach for implementing lineartime modelchecking, and for obtaining many extensions and improvements to this verification method. On the other hand, for branching temporal logic, automatatheoretic techniques ..."
Abstract

Cited by 354 (66 self)
 Add to MetaCart
Translating linear temporal logic formulas to automata has proven to be an effective approach for implementing lineartime modelchecking, and for obtaining many extensions and improvements to this verification method. On the other hand, for branching temporal logic, automata
Realtime logics: complexity and expressiveness
 INFORMATION AND COMPUTATION
, 1993
"... The theory of the natural numbers with linear order and monadic predicates underlies propositional linear temporal logic. To study temporal logics that are suitable for reasoning about realtime systems, we combine this classical theory of in nite state sequences with a theory of discrete time, via ..."
Abstract

Cited by 252 (16 self)
 Add to MetaCart
allows us to classify a wide variety of realtime logics according to their complexity and expressiveness. Indeed, it follows that most formalisms proposed in the literature cannot be decided. We are, however, able to identify two elementary realtime temporal logics as expressively complete fragments
Reasoning about Infinite Computations
 Information and Computation
, 1994
"... We investigate extensions of temporal logic by connectives defined by finite automata on infinite words. We consider three different logics, corresponding to three different types of acceptance conditions (finite, looping and repeating) for the automata. It turns out, however, that these logics all ..."
Abstract

Cited by 315 (58 self)
 Add to MetaCart
We investigate extensions of temporal logic by connectives defined by finite automata on infinite words. We consider three different logics, corresponding to three different types of acceptance conditions (finite, looping and repeating) for the automata. It turns out, however, that these logics all
Model Checking of Probabilistic and Nondeterministic Systems
, 1995
"... . The temporal logics pCTL and pCTL* have been proposed as tools for the formal specification and verification of probabilistic systems: as they can express quantitative bounds on the probability of system evolutions, they can be used to specify system properties such as reliability and performance. ..."
Abstract

Cited by 291 (13 self)
 Add to MetaCart
. The temporal logics pCTL and pCTL* have been proposed as tools for the formal specification and verification of probabilistic systems: as they can express quantitative bounds on the probability of system evolutions, they can be used to specify system properties such as reliability and performance
The Tool KRONOS
 In Proc. of Hybrid Systems III, LNCS 1066
, 1996
"... KRONOS [6, 8] is a tool developed with the aim to assist the user to validate complex realtime systems. The tool checks whether a realtinae system modeled by a timed automaton [4] satisfies a timing property specified by a formula of the temporal logic TCTL [3]. KRONOS implements the symbolic mode ..."
Abstract

Cited by 270 (41 self)
 Add to MetaCart
KRONOS [6, 8] is a tool developed with the aim to assist the user to validate complex realtime systems. The tool checks whether a realtinae system modeled by a timed automaton [4] satisfies a timing property specified by a formula of the temporal logic TCTL [3]. KRONOS implements the symbolic
Results 1  10
of
1,483