Results 1  10
of
741,407
On the bias of traceroute sampling: or, powerlaw degree distributions in regular graphs
 In ACM STOC
, 2005
"... Understanding the graph structure of the Internet is a crucial step for building accurate network models and designing efficient algorithms for Internet applications. Yet, obtaining this graph structure can be a surprisingly difficult task, as edges cannot be explicitly queried. For instance, empiri ..."
Abstract

Cited by 80 (1 self)
 Add to MetaCart
, for a very general class of underlying degree distributions, explicitly calculate the distribution that will be observed. As example applications of our machinery, we prove that traceroute sampling finds powerlaw degree distributions in both δregular and Poissondistributed random graphs. Thus, our
Powerlaw distributions in empirical data
 ISSN 00361445. doi: 10.1137/ 070710111. URL http://dx.doi.org/10.1137/070710111
, 2009
"... Powerlaw distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and manmade phenomena. Unfortunately, the empirical detection and characterization of power laws is made difficult by the large fluctuations that occur in the t ..."
Abstract

Cited by 589 (7 self)
 Add to MetaCart
in the tail of the distribution. In particular, standard methods such as leastsquares fitting are known to produce systematically biased estimates of parameters for powerlaw distributions and should not be used in most circumstances. Here we describe statistical techniques for making accurate parameter
ABSTRACT On the Bias of Traceroute Sampling or, Powerlaw Degree Distributions in Regular Graphs
"... Understanding the structure of the Internet graph is a crucial step for building accurate network models and designing efficient algorithms for Internet applications. Yet, obtaining its graph structure is a surprisingly difficult task, as edges cannot be explicitly queried. Instead, empirical studie ..."
Abstract
 Add to MetaCart
traceroute sampling finds powerlaw degree distributions in both δregular and Poissondistributed random graphs. Thus, our work puts the observations of Lakhina et al. on a rigorous footing, and extends them to nearly arbitrary degree distributions.
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 511 (8 self)
 Add to MetaCart
Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
heavy tails for in and outdegree distributions, communities, smallworld phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs
Understanding Normal and Impaired Word Reading: Computational Principles in QuasiRegular Domains
 PSYCHOLOGICAL REVIEW
, 1996
"... We develop a connectionist approach to processing in quasiregular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract

Cited by 583 (94 self)
 Add to MetaCart
We develop a connectionist approach to processing in quasiregular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic
DISTRIBUTED SYSTEMS
, 1985
"... Growth of distributed systems has attained unstoppable momentum. If we better understood how to think about, analyze, and design distributed systems, we could direct their implementation with more confidence. ..."
Abstract

Cited by 755 (1 self)
 Add to MetaCart
Growth of distributed systems has attained unstoppable momentum. If we better understood how to think about, analyze, and design distributed systems, we could direct their implementation with more confidence.
Results 1  10
of
741,407