Results 1  10
of
803,871
Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate Methods
 J. Mol. Evol
, 1994
"... Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called ..."
Abstract

Cited by 540 (28 self)
 Add to MetaCart
, and four such categories appear to be sufficient to produce both an optimum, or nearoptimum fit by the model to the data, and also an acceptable approximation to the continuous dis tribution. The second method, called "fixedrates mod el," classifies sites into several classes according
The fundamental properties of natural numbers
 Journal of Formalized Mathematics
, 1989
"... Summary. Some fundamental properties of addition, multiplication, order relations, exact division, the remainder, divisibility, the least common multiple, the greatest common divisor are presented. A proof of Euclid algorithm is also given. MML Identifier:NAT_1. WWW:http://mizar.org/JFM/Vol1/nat_1.h ..."
Abstract

Cited by 682 (76 self)
 Add to MetaCart
. The scheme Ind concerns a unary predicate P, and states that: For every natural number k holdsP[k] provided the parameters satisfy the following conditions: • P[0], and • For every natural number k such thatP[k] holdsP[k+1]. The scheme Nat Ind concerns a unary predicateP, and states that: For every natural
The irreducibility of the space of curves of given genus
 Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~ ..."
Abstract

Cited by 512 (2 self)
 Add to MetaCart
~ (1, and then the result is classical. A simple proof appears in EnriquesChisini [E, vol. 3, chap. 3], based on analyzing the totality of coverings of p1 of degree n, with a fixed number d of ordinary branch points. This method has been extended to char. p by William Fulton [F], using specializations
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
CalabiYau manifolds V, W of dimension n (not necessarily equal to 3) one has dim H p (V, Ω q) = dim H n−p (W, Ω q). Physicists conjectured that conformal field theories associated with mirror varieties are equivalent. Mathematically, MS is considered now as a relation between numbers of rational curves
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored. AMS subject classifications: 82P10, 11Y05, 68Q10. 1 Introduction One of the first results in the mathematics of computation, which underlies the subsequent development
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
o(1)) ln n), and previous results of Lund and Yannakakis, that showed hardness of approximation within a ratio of (log 2 n)=2 ' 0:72 lnn. For max kcover we show an approximation threshold of (1 \Gamma 1=e) (up to low order terms), under the assumption that P != NP .
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. (We thus give the first examples of quantum cryptanalysis.) 1 Introduction Since the discovery of quantum mechanics, people have found the behavior of...
A public key cryptosystem and a signature scheme based on discrete logarithms
 Adv. in Cryptology, SpringerVerlag
, 1985
"... AbstractA new signature scheme is proposed, together with an implementation of the DiffieHellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields. I. ..."
Abstract

Cited by 1520 (0 self)
 Add to MetaCart
AbstractA new signature scheme is proposed, together with an implementation of the DiffieHellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields. I.
Timing Attacks on Implementations of DiffieHellman, RSA, DSS, and Other Systems
, 1996
"... By carefully measuring the amount of time required to perform private key operations, attackers may be able to find fixed DiffieHellman exponents, factor RSA keys, and break other cryptosystems. Against a vulnerable system, the attack is computationally inexpensive and often requires only known cip ..."
Abstract

Cited by 644 (3 self)
 Add to MetaCart
By carefully measuring the amount of time required to perform private key operations, attackers may be able to find fixed DiffieHellman exponents, factor RSA keys, and break other cryptosystems. Against a vulnerable system, the attack is computationally inexpensive and often requires only known ciphertext. Actual systems are potentially at risk, including cryptographic tokens, networkbased cryptosystems, and other applications where attackers can make reasonably accurate timing measurements. Techniques for preventing the attack for RSA and DiffieHellman are presented. Some cryptosystems will need to be revised to protect against the attack, and new protocols and algorithms may need to incorporate measures to prevent timing attacks.
Results 1  10
of
803,871