Results 1  10
of
1,924,763
A Genetic Algorithm for Minimax Optimization Problems
 In Congress on Evolutionary Computation
, 1999
"... Robust discrete optimization is a technique for structuring uncertainty in the decisionmaking process. The objective is to find a robust solution that has the best worstcase performance over a set of possible scenarios. However, this is a difficult optimization problem. This paper proposes a twos ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
space genetic algorithm as a general technique to solve minimax optimization problems. This algorithm maintains two populations. The first population represents solutions. The second population represents scenarios. An individual in one population is evaluated with respect to the individuals in the other
A Genetic Algorithm for Minimax Optimization Problems
"... Abstract Robust discrete optimization is a technique for structuring uncertainty in the decisionmaking process. The objective is to find a robust solution that has the best worstcase performance over a set of possible scenarios. However, this is a difficult optimization problem. This paper propos ..."
Abstract
 Add to MetaCart
proposes a twospace genetic algorithm as a general technique to solve minimax optimization problems. This algorithm maintains two populations. The first population represents solutions. The second population represents scenarios. An individual in one population is evaluated with respect to the individuals
Minimax Programs
 University of California Press
, 1997
"... We introduce an optimization problem called a minimax program that is similar to a linear program, except that the addition operator is replaced in the constraint equations by the maximum operator. We clarify the relation of this problem to some betterknown problems. We identify an interesting spec ..."
Abstract

Cited by 475 (5 self)
 Add to MetaCart
We introduce an optimization problem called a minimax program that is similar to a linear program, except that the addition operator is replaced in the constraint equations by the maximum operator. We clarify the relation of this problem to some betterknown problems. We identify an interesting
No Free Lunch Theorems for Optimization
, 1997
"... A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving. A number of “no free lunch ” (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performan ..."
Abstract

Cited by 928 (10 self)
 Add to MetaCart
issues addressed include timevarying optimization problems and a priori “headtohead” minimax distinctions between optimization algorithms, distinctions that result despite the NFL theorems’ enforcing of a type of uniformity over all algorithms.
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
matrix inequality (LMI) problems. A notion of KarushKuhnTucker polynomials is introduced in a global optimality condition. Some illustrative examples are provided. Key words. global optimization, theory of moments and positive polynomials, semidefinite programming AMS subject classifications. 90C22
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1848 (44 self)
 Add to MetaCart
is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VC
Optimal approximation by piecewise smooth functions and associated variational problems
 Commun. Pure Applied Mathematics
, 1989
"... (Article begins on next page) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mumford, David Bryant, and Jayant Shah. 1989. Optimal approximations by piecewise smooth functions and associated variational problems. ..."
Abstract

Cited by 1290 (14 self)
 Add to MetaCart
(Article begins on next page) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mumford, David Bryant, and Jayant Shah. 1989. Optimal approximations by piecewise smooth functions and associated variational problems
Some optimal inapproximability results
, 2002
"... We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for ..."
Abstract

Cited by 782 (12 self)
 Add to MetaCart
for the efficient approximability of many optimization problems studied previously. In particular, for MaxE2Sat, MaxCut, MaxdiCut, and Vertex cover. Warning: Essentially this paper has been published in JACM and is subject to copyright restrictions. In particular it is for personal use only.
Learnability in Optimality Theory
, 1995
"... In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given gr ..."
Abstract

Cited by 528 (34 self)
 Add to MetaCart
grammatical module. We decompose the learning problem and present formal results for a central subproblem, deducing the constraint ranking particular to a target language, given structural descriptions of positive examples. The structure imposed on the space of possible grammars by Optimality Theory allows
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM Journal on Scientific Computing
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract

Cited by 557 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.
Results 1  10
of
1,924,763