Results 1  10
of
337,935
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 619 (31 self)
 Add to MetaCart
A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much
Probabilistic Approximation of Metric Spaces and its Algorithmic Applications
 In 37th Annual Symposium on Foundations of Computer Science
, 1996
"... The goal of approximating metric spaces by more simple metric spaces has led to the notion of graph spanners [PU89, PS89] and to lowdistortion embeddings in lowdimensional spaces [LLR94], having many algorithmic applications. This paper provides a novel technique for the analysis of randomized ..."
Abstract

Cited by 361 (33 self)
 Add to MetaCart
algorithms for optimization problems on metric spaces, by relating the randomized performance ratio for any metric space to the randomized performance ratio for a set of "simple" metric spaces. We define a notion of a set of metric spaces that probabilisticallyapproximates another metric space
A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization
, 1997
"... The Rocchio relevance feedback algorithm is one of the most popular and widely applied learning methods from information retrieval. Here, a probabilistic analysis of this algorithm is presented in a text categorization framework. The analysis gives theoretical insight into the heuristics used in the ..."
Abstract

Cited by 452 (1 self)
 Add to MetaCart
in the Rocchio algorithm, particularly the word weighting scheme and the similarity metric. It also suggests improvements which lead to a probabilistic variant of the Rocchio classifier. The Rocchio classifier, its probabilistic variant, and a naive Bayes classifier are compared on six text categorization tasks
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 537 (6 self)
 Add to MetaCart
maximumlikelihood framework, based on a specific form of Gaussian latent variable model. This leads to a welldefined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context
A Bayesian method for the induction of probabilistic networks from data
 MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract

Cited by 1381 (32 self)
 Add to MetaCart
of probabilistic expert systems. We extend the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary evaluation of an algorithm for constructing a belief
The Perceptron: A Probabilistic Model for Information Storage and Organization in The Brain
 Psychological Review
, 1958
"... If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what ..."
Abstract

Cited by 1143 (0 self)
 Add to MetaCart
If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 799 (14 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose
A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots
 Machine Learning
, 1998
"... . This paper addresses the problem of building largescale geometric maps of indoor environments with mobile robots. It poses the map building problem as a constrained, probabilistic maximumlikelihood estimation problem. It then devises a practical algorithm for generating the most likely map from ..."
Abstract

Cited by 487 (47 self)
 Add to MetaCart
. This paper addresses the problem of building largescale geometric maps of indoor environments with mobile robots. It poses the map building problem as a constrained, probabilistic maximumlikelihood estimation problem. It then devises a practical algorithm for generating the most likely map from
Results 1  10
of
337,935