Results 1  10
of
1,539,505
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture
PCASIFT: A more distinctive representation for local image descriptors
, 2004
"... Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deforma ..."
Abstract

Cited by 572 (6 self)
 Add to MetaCart
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image
An Extended Set of Fortran Basic Linear Algebra Subprograms
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1986
"... This paper describes an extension to the set of Basic Linear Algebra Subprograms. The extensions are targeted at matrixvector operations which should provide for efficient and portable implementations of algorithms for high performance computers. ..."
Abstract

Cited by 526 (72 self)
 Add to MetaCart
This paper describes an extension to the set of Basic Linear Algebra Subprograms. The extensions are targeted at matrixvector operations which should provide for efficient and portable implementations of algorithms for high performance computers.
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NP
Shape modeling with front propagation: A level set approach
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... Abstract Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods ..."
Abstract

Cited by 804 (20 self)
 Add to MetaCart
secting, hypersurface flowing along its gradient field with constant speed or a speed that depends on the curvature. It is moved by solving a “HamiltonJacob? ’ type equation written for a function in which the interface is a particular level set. A speed term synthesizpd from the image is used to stop the interface
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information
Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
 ACOUSTICS, SPEECH AND SIGNAL PROCESSING, IEEE TRANSACTIONS ON
, 1980
"... Several parametric representations of the acoustic signal were compared as to word recognition performance in a syllableoriented continuous speech recognition system. The vocabulary included many phonetically similar monosyllabic words, therefore the emphasis was on ability to retain phonetically ..."
Abstract

Cited by 1089 (2 self)
 Add to MetaCart
phonetically significant acoustic information in the face of syntactic and duration variations. For each ~ arameter set (based on a melfrequency cepstrum, a linear frequency cepstrum, a linear prediction cepstrum, a linear prediction spectrum, or a set of reflection coefficients), word templates were
A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
 PSYCHOLOGICAL REVIEW
, 1997
"... How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis (LS ..."
Abstract

Cited by 1772 (10 self)
 Add to MetaCart
How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis
EigenTracking: Robust Matching and Tracking of Articulated Objects Using a ViewBased Representation
 International Journal of Computer Vision
, 1998
"... This paper describes an approach for tracking rigid and articulated objects using a viewbased representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the leastsquares image r ..."
Abstract

Cited by 656 (16 self)
 Add to MetaCart
This paper describes an approach for tracking rigid and articulated objects using a viewbased representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the leastsquares image
Results 1  10
of
1,539,505