Results 1  10
of
412,922
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract

Cited by 506 (0 self)
 Add to MetaCart
We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 576 (16 self)
 Add to MetaCart
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 548 (12 self)
 Add to MetaCart
and maximum stable set problems in perfect graphs, the maximum k partite subgraph problem in graphs, and va...
Tor: The secondgeneration onion router,”
 in 13th USENIX Security Symposium. Usenix,
, 2004
"... Abstract We present Tor, a circuitbased lowlatency anonymous communication service. This secondgeneration Onion Routing system addresses limitations in the original design by adding perfect forward secrecy, congestion control, directory servers, integrity checking, configurable exit policies, an ..."
Abstract

Cited by 1228 (33 self)
 Add to MetaCart
Abstract We present Tor, a circuitbased lowlatency anonymous communication service. This secondgeneration Onion Routing system addresses limitations in the original design by adding perfect forward secrecy, congestion control, directory servers, integrity checking, configurable exit policies
The strong perfect graph theorem
 ANNALS OF MATHEMATICS
, 2006
"... A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. The “strong perfect graph conjecture” (Berge, 1961) asse ..."
Abstract

Cited by 284 (22 self)
 Add to MetaCart
A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. The “strong perfect graph conjecture” (Berge, 1961
Convolution Kernels for Natural Language
 Advances in Neural Information Processing Systems 14
, 2001
"... We describe the application of kernel methods to Natural Language Processing (NLP) problems. In many NLP tasks the objects being modeled are strings, trees, graphs or other discrete structures which require some mechanism to convert them into feature vectors. We describe kernels for various natural ..."
Abstract

Cited by 340 (7 self)
 Add to MetaCart
We describe the application of kernel methods to Natural Language Processing (NLP) problems. In many NLP tasks the objects being modeled are strings, trees, graphs or other discrete structures which require some mechanism to convert them into feature vectors. We describe kernels for various natural
A general approximation technique for constrained forest problems
 SIAM J. COMPUT.
, 1995
"... We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization proble ..."
Abstract

Cited by 412 (21 self)
 Add to MetaCart
of these problems. For instance, we obtain a 2approximation algorithm for the minimumweight perfect matching problem under the triangle inequality. Our running time of O(n log n) time compares favorably with the best strongly polynomial exact algorithms running in O(n 3) time for dense graphs. A similar result
Perfect Graphs are Kernel Solvable
, 2000
"... In this paper we prove that perfect graphs are kernel solvable, as it was conjectured by Berge and Duchet (1983). The converse statement, i.e. that kernel solvable graphs are perfect, was also conjectured in the same paper, and is still open. In this direction we prove that it is always possible to ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
In this paper we prove that perfect graphs are kernel solvable, as it was conjectured by Berge and Duchet (1983). The converse statement, i.e. that kernel solvable graphs are perfect, was also conjectured in the same paper, and is still open. In this direction we prove that it is always possible
Kernels and Regularization on Graphs
, 2003
"... We introduce a family of kernels on graphs based on the notion of regularization operators. This generalizes in a natural way the notion of regularization and Greens functions, as commonly used for real valued functions, to graphs. It turns out that di#usion kernels can be found as a special cas ..."
Abstract

Cited by 244 (11 self)
 Add to MetaCart
We introduce a family of kernels on graphs based on the notion of regularization operators. This generalizes in a natural way the notion of regularization and Greens functions, as commonly used for real valued functions, to graphs. It turns out that di#usion kernels can be found as a special
Large margin dags for multiclass classification
 Advances in Neural Information Processing Systems 12
, 2000
"... We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many twoclass classifiers into a multiclass classifier. For anclass problem, the DDAG contains � classifiers, one for each pair of classes. We present a VC analysis of the case when the nod ..."
Abstract

Cited by 376 (1 self)
 Add to MetaCart
We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many twoclass classifiers into a multiclass classifier. For anclass problem, the DDAG contains � classifiers, one for each pair of classes. We present a VC analysis of the case when
Results 1  10
of
412,922