Results 1  10
of
971,144
A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks
, 1997
"... We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporallyordered sequence of diffusing computations; each computat ..."
Abstract

Cited by 1095 (6 self)
 Add to MetaCart
We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporallyordered sequence of diffusing computations; each
Routing in a delay tolerant network
 Proceedings of ACM Sigcomm
, 2004
"... We formulate the delaytolerant networking routing problem, where messages are to be moved endtoend across a connectivity graph that is timevarying but whose dynamics may be known in advance. The problem has the added constraints of finite buffers at each node and the general property that no con ..."
Abstract

Cited by 612 (8 self)
 Add to MetaCart
global knowledge, efficient algorithms can be constructed for routing in such environments. To the best of our knowledge this is the first such investigation of routing issues in DTNs.
Spray and Wait: An Efficient Routing Scheme for Intermittently Connected Mobile Networks
 SIGCOMM'05
, 2005
"... Intermittently connected mobile networks are sparse wireless networks where most of the time there does not exist a complete path from the source to the destination. These networks ..."
Abstract

Cited by 477 (9 self)
 Add to MetaCart
Intermittently connected mobile networks are sparse wireless networks where most of the time there does not exist a complete path from the source to the destination. These networks
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract

Cited by 541 (16 self)
 Add to MetaCart
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads
On the Construction of EnergyEfficient Broadcast and Multicast Trees in Wireless Networks
, 2000
"... wieselthier @ itd.nrl.navy.mil nguyen @ itd.nrl.navy.mil ..."
Abstract

Cited by 554 (13 self)
 Add to MetaCart
wieselthier @ itd.nrl.navy.mil nguyen @ itd.nrl.navy.mil
An Architecture for WideArea Multicast Routing
"... Existing multicast routing mechanisms were intended for use within regions where a group is widely represented or bandwidth is universally plentiful. When group members, and senders to those group members, are distributed sparsely across a wide area, these schemes are not efficient; data packets or ..."
Abstract

Cited by 529 (22 self)
 Add to MetaCart
Existing multicast routing mechanisms were intended for use within regions where a group is widely represented or bandwidth is universally plentiful. When group members, and senders to those group members, are distributed sparsely across a wide area, these schemes are not efficient; data packets
How bad is selfish routing?
 JOURNAL OF THE ACM
, 2002
"... We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route t ..."
Abstract

Cited by 678 (27 self)
 Add to MetaCart
We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route
Pastry: Scalable, distributed object location and routing for largescale peertopeer systems
, 2001
"... This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing scheme for widearea peertopeer applications. Pastry provides applicationlevel routing and object location in a potentially very large overlay network of nodes connected via the Internet. ..."
Abstract

Cited by 2063 (50 self)
 Add to MetaCart
This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing scheme for widearea peertopeer applications. Pastry provides applicationlevel routing and object location in a potentially very large overlay network of nodes connected via the Internet
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Results 1  10
of
971,144