Results 1 - 10
of
21,525
How much should we trust differences-in-differences estimates?
, 2003
"... Most papers that employ Differences-in-Differences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in state-level data on femal ..."
Abstract
-
Cited by 828 (1 self)
- Add to MetaCart
Most papers that employ Differences-in-Differences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in state-level data
On the algorithmic implementation of multi-class kernel-based vector machines
- Journal of Machine Learning Research
"... In this paper we describe the algorithmic implementation of multiclass kernel-based vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic ob ..."
Abstract
-
Cited by 559 (13 self)
- Add to MetaCart
In this paper we describe the algorithmic implementation of multiclass kernel-based vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic
Detectability of Discrete Event Systems
"... In this paper, we investigate the detectability problem in discrete event systems. We assume that we do not know initially which state the system is in. The problem is to determine the current and subsequent states of the system based on a sequence of observation. The observation includes partial ev ..."
Abstract
-
Cited by 806 (14 self)
- Add to MetaCart
In this paper, we investigate the detectability problem in discrete event systems. We assume that we do not know initially which state the system is in. The problem is to determine the current and subsequent states of the system based on a sequence of observation. The observation includes partial
"GrabCut” -- interactive foreground extraction using iterated graph cuts
- ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract
-
Cited by 1130 (36 self)
- Add to MetaCart
. Recently, an approach based on optimization by graph-cut has been developed which successfully combines both types of information. In this paper we extend the graph-cut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract
-
Cited by 516 (18 self)
- Add to MetaCart
. A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract
-
Cited by 1422 (49 self)
- Add to MetaCart
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular
The Application of Petri Nets to Workflow Management
, 1998
"... Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses the ..."
Abstract
-
Cited by 533 (64 self)
- Add to MetaCart
Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
- IEEE TRANSACTIONS ON SIGNAL PROCESSING
, 2002
"... Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view o ..."
Abstract
-
Cited by 2006 (2 self)
- Add to MetaCart
of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass
An Introduction to the Kalman Filter
- UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
, 1995
"... In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area o ..."
Abstract
-
Cited by 1146 (13 self)
- Add to MetaCart
of autonomous or assisted navigation.
The Kalman filter is a set of mathematical equations that provides an efficient computational (recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error. The filter is very powerful in several aspects: it supports
Real-time human pose recognition in parts from single depth images
- IN CVPR
, 2011
"... We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler p ..."
Abstract
-
Cited by 568 (17 self)
- Add to MetaCart
We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler
Results 1 - 10
of
21,525