Results 1  10
of
130,797
Steadystate probabilities for attractors in probabilistic Boolean networks
, 2005
"... Boolean networks form a class of disordered dynamical systems that have been studied in physics owing to their relationships with disordered systems in statistical mechanics and in biology as models of genetic regulatory networks. Recently they have been generalized to probabilistic Boolean networks ..."
Abstract
 Add to MetaCart
of the model, the steadystate probabilities of the attractors are critical to networkunderstanding. Heretofore they have been found by simulation; in this paper we derive analytic expressions for these probabilities, first for Boolean
distribution of probabilistic Boolean networks
, 2006
"... An approximation method for solving the steadystate probability ..."
An approximation method for solving the steadystate probability distribution of probabilistic Boolean networks
, 2006
"... Motivation: Probabilistic Boolean networks (PBNs) have been proposed to model genetic regulatory interactions. The steadystate probability distribution of a PBN gives important information about the captured genetic network. The computation of the steadystate probability distribution usually inclu ..."
Abstract
 Add to MetaCart
Motivation: Probabilistic Boolean networks (PBNs) have been proposed to model genetic regulatory interactions. The steadystate probability distribution of a PBN gives important information about the captured genetic network. The computation of the steadystate probability distribution usually
Probabilistic Boolean networks: a rulebased uncertainty model for gene regulatory networks
, 2002
"... Motivation: Our goal is to construct a model for genetic regulatory networks such that the model class: (i ) incorporates rulebased dependencies between genes; (ii ) allows the systematic study of global network dynamics; (iii ) is able to cope with uncertainty, both in the data and the model selec ..."
Abstract

Cited by 382 (58 self)
 Add to MetaCart
Motivation: Our goal is to construct a model for genetic regulatory networks such that the model class: (i ) incorporates rulebased dependencies between genes; (ii ) allows the systematic study of global network dynamics; (iii ) is able to cope with uncertainty, both in the data and the model
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 619 (31 self)
 Add to MetaCart
of the relational structure present in our database. This paper builds on the recent work on probabilistic relational models (PRMs), and describes how to learn them from databases. PRMs allow the properties of an object to depend probabilistically both on other properties of that object and on properties of related
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
ofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection
Steadystate analysis of genetic regulatory networks modelled by probabilistic Boolean networks
, 2003
"... Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steadystate (longrun) behaviour of a PBN by analy ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steadystate (longrun) behaviour of a PBN
The Perceptron: A Probabilistic Model for Information Storage and Organization in The Brain
 Psychological Review
, 1958
"... If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what ..."
Abstract

Cited by 1143 (0 self)
 Add to MetaCart
If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what form is information stored, or remembered? 3. How does information contained in storage, or in memory, influence recognition and behavior? The first of these questions is in the
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 788 (23 self)
 Add to MetaCart
restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly
Modeling and simulation of genetic regulatory systems: A literature review
 JOURNAL OF COMPUTATIONAL BIOLOGY
, 2002
"... In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between ..."
Abstract

Cited by 729 (15 self)
 Add to MetaCart
In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between
Results 1  10
of
130,797