Results 1  10
of
267,816
Formalising trust as a computational concept
, 1994
"... Trust is a judgement of unquestionable utility — as humans we use it every day of our lives. However, trust has suffered from an imperfect understanding, a plethora of definitions, and informal use in the literature and in everyday life. It is common to say “I trust you, ” but what does that mean? T ..."
Abstract

Cited by 518 (5 self)
 Add to MetaCart
robustness to independent agents. • A useful judgement in the light of experience of the behaviour of others. • Applicable to inanimate others. The thesis argues these points from the point of view of artificial agents. Trust in an artificial agent is a means of providing an additional tool
WordNet: An online lexical database
 International Journal of Lexicography
, 1990
"... WordNet is an online lexical reference system whose design is inspired by current ..."
Abstract

Cited by 1945 (9 self)
 Add to MetaCart
WordNet is an online lexical reference system whose design is inspired by current
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview
Irrelevant Features and the Subset Selection Problem
 MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
, 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract

Cited by 741 (26 self)
 Add to MetaCart
We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features
Preference Parameters And Behavioral Heterogeneity: An Experimental Approach In The Health And Retirement Study
, 1997
"... This paper reports measures of preference parameters relating to risk tolerance, time preference, and intertemporal substitution. These measures are based on survey responses to hypothetical situations constructed using an economic theorist's concept of the underlying parameters. The individual ..."
Abstract

Cited by 524 (12 self)
 Add to MetaCart
This paper reports measures of preference parameters relating to risk tolerance, time preference, and intertemporal substitution. These measures are based on survey responses to hypothetical situations constructed using an economic theorist's concept of the underlying parameters
The strength of weak learnability
 Machine Learning
, 1990
"... Abstract. This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distributionfree (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a Source of examples of the unknown concept, the learner with h ..."
Abstract

Cited by 861 (24 self)
 Add to MetaCart
with high probability is able to output an hypothesis that is correct on all but an arbitrarily small fraction of the instances. The concept class is weakly learnable if the learner can produce an hypothesis that performs only slightly better than random guessing. In this paper, it is shown that these two
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
learning problems include direct application of multiclass algorithms such as the decisiontree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2241 (104 self)
 Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation
Monetary Policy Shocks: What Have we Learned and to What End?
, 1998
"... This paper reviews recent research that grapples with the question: What happens after an exogenous shock to monetary policy? We argue that this question is interesting because it lies at the center of a particular approach to assessing the empirical plausibility of structural economic models that c ..."
Abstract

Cited by 967 (25 self)
 Add to MetaCart
effects of a monetary policy shock in the sense that inference is robust across a large subset of the identification schemes that have been considered in the literature. We document the nature of this agreement as
Results 1  10
of
267,816