Results 1  10
of
10,158
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1848 (44 self)
 Add to MetaCart
is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VC
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
, 1998
"... SeDuMi is an addon for MATLAB, that lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This pape ..."
Abstract

Cited by 1334 (4 self)
 Add to MetaCart
SeDuMi is an addon for MATLAB, that lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing
Optimality conditions and duality in nondifferentiable minimax fractional programming with generalized convexity
 J. Optim. Theory Appl
"... Abstract. We establish sufficient optimality conditions for a class of nondifferentiable minimax fractional programming problems involving (F, α, ρ, d)convexity. Subsequently, we apply the optimality conditions to formulate two types of dual problems and prove appropriate duality theorems. Key Wor ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Words. Minimax fractional programming, sublinear functionals, optimality conditions, duality, generalized convexity. 1.
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0
A Maximum Entropy approach to Natural Language Processing
 COMPUTATIONAL LINGUISTICS
, 1996
"... The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper we des ..."
Abstract

Cited by 1341 (5 self)
 Add to MetaCart
The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper we describe a method for statistical modeling based on maximum entropy. We present a maximumlikelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently, using as examples several problems in natural language processing.
Results 1  10
of
10,158