Results 1  10
of
429,812
On MAP inference by MWSS on Perfect Graphs
"... Finding the most likely (MAP) configuration of a Markov random field (MRF) is NPhard in general. A promising, recent technique is to reduce the problem to finding a maximum weight stable set (MWSS) on a derived weighted graph, which if perfect, allows inference in polynomial time. We derivenewresul ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
Finding the most likely (MAP) configuration of a Markov random field (MRF) is NPhard in general. A promising, recent technique is to reduce the problem to finding a maximum weight stable set (MWSS) on a derived weighted graph, which if perfect, allows inference in polynomial time. We
Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs
"... A recent, promising approach to identifying a configuration of a discrete graphical model with highest probability (termed MAP inference) is to reduce the problem to finding a maximum weight stable set (MWSS) in a derived weighted graph, which, if perfect, allows a solution to be found in polynomial ..."
Abstract
 Add to MetaCart
A recent, promising approach to identifying a configuration of a discrete graphical model with highest probability (termed MAP inference) is to reduce the problem to finding a maximum weight stable set (MWSS) in a derived weighted graph, which, if perfect, allows a solution to be found
THIS VERSION FIXES A TYPO IN THE STATEMENT OF THEOREM 8 COMPARED TO THE JMLR PUBLISHED VERSION. Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs
"... A recent, promising approach to identifying a configuration of a discrete graphical model with highest probability (termed MAP inference) is to reduce the problem to finding a maximum weight stable set (MWSS) in a derived weighted graph, which, if perfect, allows a solution to be found in polynomial ..."
Abstract
 Add to MetaCart
A recent, promising approach to identifying a configuration of a discrete graphical model with highest probability (termed MAP inference) is to reduce the problem to finding a maximum weight stable set (MWSS) in a derived weighted graph, which, if perfect, allows a solution to be found
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in largescale statistical models.
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas
The StructureMapping Engine: Algorithm and Examples
 Artificial Intelligence
, 1989
"... This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract

Cited by 512 (115 self)
 Add to MetaCart
This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its
Results 1  10
of
429,812