Results 1  10
of
2,441,480
The SimpleScalar tool set, version 2.0
 Computer Architecture News
, 1997
"... This report describes release 2.0 of the SimpleScalar tool set, a suite of free, publicly available simulation tools that offer both detailed and highperformance simulation of modern microprocessors. The new release offers more tools and capabilities, precompiled binaries, cleaner interfaces, bette ..."
Abstract

Cited by 1827 (44 self)
 Add to MetaCart
This report describes release 2.0 of the SimpleScalar tool set, a suite of free, publicly available simulation tools that offer both detailed and highperformance simulation of modern microprocessors. The new release offers more tools and capabilities, precompiled binaries, cleaner interfaces
A Simple Estimator of Cointegrating Vectors in Higher Order Cointegrated Systems
 ECONOMETRICA
, 1993
"... Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions. T ..."
Abstract

Cited by 507 (3 self)
 Add to MetaCart
Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
The large N limit of superconformal field theories and supergravity
, 1998
"... We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of AntideSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and ..."
Abstract

Cited by 5673 (21 self)
 Add to MetaCart
We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of AntideSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory
New Support Vector Algorithms
, 2000
"... this article with the regression case. To explain this, we will introduce a suitable definition of a margin that is maximized in both cases ..."
Abstract

Cited by 461 (42 self)
 Add to MetaCart
this article with the regression case. To explain this, we will introduce a suitable definition of a margin that is maximized in both cases
QSplat: A Multiresolution Point Rendering System for Large Meshes
, 2000
"... Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of millions of polygons. Traditional algorithms for display, simplification, and progressive transmission of meshes are impractical for data sets of this size. We describe a system for representing and p ..."
Abstract

Cited by 500 (8 self)
 Add to MetaCart
Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of millions of polygons. Traditional algorithms for display, simplification, and progressive transmission of meshes are impractical for data sets of this size. We describe a system for representing
Evaluating Future Microprocessors: the SimpleScalar Tool Set
, 1996
"... 1 This document describes the SimpleScalar tool set, a collection of publiclyavailable simulation tools that use detailed execution driven to simulate modern processor architectures. In this report, we give an overview of the tool set, show how to obtain, install and use it. We also discuss detai ..."
Abstract

Cited by 471 (15 self)
 Add to MetaCart
details about the tools' internals, and document the SimpleScalar architecture. 1 Overview Modern processors are extremely complex pieces of engineering. Researching aspects of processor and system design with these complicated beasts requires excellent simulation tools. Prototyping processors
Results 1  10
of
2,441,480