Results 1  10
of
307,932
On graph kernels: Hardness results and efficient alternatives
 IN: CONFERENCE ON LEARNING THEORY
, 2003
"... As most ‘realworld’ data is structured, research in kernel methods has begun investigating kernels for various kinds of structured data. One of the most widely used tools for modeling structured data are graphs. An interesting and important challenge is thus to investigate kernels on instances tha ..."
Abstract

Cited by 185 (5 self)
 Add to MetaCart
that are represented by graphs. So far, only very specific graphs such as trees and strings have been considered. This paper investigates kernels on labeled directed graphs with general structure. It is shown that computing a strictly positive definite graph kernel is at least as hard as solving the graph isomorphism
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
The xKernel: An Architecture for Implementing Network Protocols
 IEEE Transactions on Software Engineering
, 1991
"... This paper describes a new operating system kernel, called the xkernel, that provides an explicit architecture for constructing and composing network protocols. Our experience implementing and evaluating several protocols in the xkernel shows that this architecture is both general enough to acc ..."
Abstract

Cited by 663 (21 self)
 Add to MetaCart
This paper describes a new operating system kernel, called the xkernel, that provides an explicit architecture for constructing and composing network protocols. Our experience implementing and evaluating several protocols in the xkernel shows that this architecture is both general enough
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 734 (21 self)
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
as follows: ffl We devise a model for dynamic graph algorithms, based on performing queries and updates on an implicit representation of the drawing, and we show its applications. ffl We present several efficient dynamic drawing algorithms for trees, seriesparallel digraphs, planar stdigraphs, and planar
Secure Group Communications Using Key Graphs
, 1998
"... Many emerging applications (e.g., teleconference, realtime information services, pay per view, distributed interactive simulation, and collaborative work) are based upon a group communications model, i.e., they require packet delivery from one or more authorized senders to a very large number of au ..."
Abstract

Cited by 552 (17 self)
 Add to MetaCart
of authorized receivers. As a result, securing group communications (i.e., providing confidentiality, integrity, and authenticity of messages delivered between group members) will become a critical networking issue. In this paper, we present a novel solution to the scalability problem of group/multicast key
Alternatingtime Temporal Logic
 Journal of the ACM
, 1997
"... Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract

Cited by 615 (55 self)
 Add to MetaCart
variety of temporal logic: alternatingtime temporal logic offers selective quantification over those paths that are possible outcomes of games, such as the game in which the system and the environment alternate moves. While lineartime and branchingtime logics are natural specification languages
The pyramid match kernel: Discriminative classification with sets of image features
 IN ICCV
, 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernelbased classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract

Cited by 546 (29 self)
 Add to MetaCart
Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernelbased classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve
Results 1  10
of
307,932