Results 1  10
of
58,768
Elliptic Curve Paillier Schemes
, 2001
"... . This paper is concerned with generalisations of Paillier's probabilistic encryption scheme from the integers modulo a square to elliptic curves over rings. Paillier himself described two public key encryption schemes based on anomalous elliptic curves over rings. It is argued that these schem ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
. This paper is concerned with generalisations of Paillier's probabilistic encryption scheme from the integers modulo a square to elliptic curves over rings. Paillier himself described two public key encryption schemes based on anomalous elliptic curves over rings. It is argued
Guide to Elliptic Curve Cryptography
, 2004
"... Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves ..."
Abstract

Cited by 593 (18 self)
 Add to MetaCart
aim to give the reader an introduction to elliptic curve cryptosystems, and to demonstrate why these systems provide relatively small block sizes, highspeed software and hardware implementations, and offer the highest strengthperkeybit of any known publickey scheme.
The irreducibility of the space of curves of given genus
 Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~ ..."
Abstract

Cited by 512 (2 self)
 Add to MetaCart
Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k
IdentityBased Encryption from the Weil Pairing
, 2001
"... We propose a fully functional identitybased encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational DiffieHellman problem. Our system is based on bilinear maps between groups. The Weil pairing on elliptic ..."
Abstract

Cited by 1699 (29 self)
 Add to MetaCart
We propose a fully functional identitybased encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational DiffieHellman problem. Our system is based on bilinear maps between groups. The Weil pairing
Short signatures from the Weil pairing
, 2001
"... Abstract. We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signa ..."
Abstract

Cited by 743 (28 self)
 Add to MetaCart
Abstract. We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where
Scalable Recognition with a Vocabulary Tree
 IN CVPR
, 2006
"... A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CDcovers from a database of 40000 images of popular music CD's. The scheme ..."
Abstract

Cited by 1043 (0 self)
 Add to MetaCart
A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CDcovers from a database of 40000 images of popular music CD's. The scheme
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
’ of holomorphic curves of higher genus curves in Calabi–Yau manifolds. It is shown that topological amplitudes can also be reinterpreted as computing corrections to superpotential terms appearing in the effective 4d theory resulting from compactification of standard 10d superstrings on the corresponding N = 2
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
CalabiYau manifolds V, W of dimension n (not necessarily equal to 3) one has dim H p (V, Ω q) = dim H n−p (W, Ω q). Physicists conjectured that conformal field theories associated with mirror varieties are equivalent. Mathematically, MS is considered now as a relation between numbers of rational curves
QSplat: A Multiresolution Point Rendering System for Large Meshes
, 2000
"... Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of millions of polygons. Traditional algorithms for display, simplification, and progressive transmission of meshes are impractical for data sets of this size. We describe a system for representing and p ..."
Abstract

Cited by 500 (8 self)
 Add to MetaCart
Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of millions of polygons. Traditional algorithms for display, simplification, and progressive transmission of meshes are impractical for data sets of this size. We describe a system for representing and progressively displaying these meshes that combines a multiresolution hierarchy based on bounding spheres with a rendering system based on points. A single data structure is used for view frustum culling, backface culling, levelofdetail selection, and rendering. The representation is compact and can be computed quickly, making it suitable for large data sets. Our implementation, written for use in a largescale 3D digitization project, launches quickly, maintains a usersettable interactive frame rate regardless of object complexity or camera position, yields reasonable image quality during motion, and refines progressively when idle to a high final image quality. We have demonstrated the system on scanned models containing hundreds of millions of samples.
Results 1  10
of
58,768