Results 1  10
of
284,550
On Approximating the Entropy of Polynomial Mappings
 ELECTRONIC COLLOQUIUM ON COMPUTATIONAL COMPLEXITY, REPORT NO. 160 (2010)
, 2010
"... We investigate the complexity of the following computational problem: Polynomial Entropy Approximation (PEA): Given a lowdegree polynomial mapping p: F n → F m, where F is a finite field, approximate the output entropy H(p(Un)), where Un is the uniform distribution on F n and H may be any of severa ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
We investigate the complexity of the following computational problem: Polynomial Entropy Approximation (PEA): Given a lowdegree polynomial mapping p: F n → F m, where F is a finite field, approximate the output entropy H(p(Un)), where Un is the uniform distribution on F n and H may be any
The space complexity of approximating the frequency moments
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract

Cited by 855 (12 self)
 Add to MetaCart
The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a
A Maximum Entropy Model for PartOfSpeech Tagging
, 1996
"... This paper presents a statistical model which trains from a corpus annotated with PartOfSpeech tags and assigns them to previously unseen text with stateoftheart accuracy(96.6%). The model can be classified as a Maximum Entropy model and simultaneously uses many contextual "features" t ..."
Abstract

Cited by 577 (1 self)
 Add to MetaCart
This paper presents a statistical model which trains from a corpus annotated with PartOfSpeech tags and assigns them to previously unseen text with stateoftheart accuracy(96.6%). The model can be classified as a Maximum Entropy model and simultaneously uses many contextual "
Discriminative Training and Maximum Entropy Models for Statistical Machine Translation
, 2002
"... We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language senten ..."
Abstract

Cited by 497 (30 self)
 Add to MetaCart
We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language
The StructureMapping Engine: Algorithm and Examples
 Artificial Intelligence
, 1989
"... This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract

Cited by 512 (115 self)
 Add to MetaCart
This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its
A Guided Tour to Approximate String Matching
 ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 584 (38 self)
 Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining the problem and its relevance, its statistical behavior, its history and current developments, and the central ideas of the algorithms and their complexities. We present a number of experiments to compare the performance of the different algorithms and show which are the best choices according to each case. We conclude with some future work directions and open problems.
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae w.r.t the vertex set). Our graph property testing algorithms are probabilistic and make assertions which are correct with high probability, utilizing only poly(1=ffl) edgequeries into the graph, where ffl is the distance parameter. Moreover, the property testing algorithms can be used to efficiently (i.e., in time linear in the number of vertices) construct partitions of the graph which corre...
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing
Results 1  10
of
284,550