Results 1  10
of
336,831
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms
Surface Reconstruction by Voronoi Filtering
 Discrete and Computational Geometry
, 1998
"... We give a simple combinatorial algorithm that computes a piecewiselinear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled ..."
Abstract

Cited by 418 (15 self)
 Add to MetaCart
We give a simple combinatorial algorithm that computes a piecewiselinear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled
A New VoronoiBased Surface Reconstruction Algorithm
, 2002
"... We describe our experience with a new algorithm for the reconstruction of surfaces from unorganized sample points in R³. The algorithm is the first for this problem with provable guarantees. Given a “good sample” from a smooth surface, the output is guaranteed to be topologically correct and converg ..."
Abstract

Cited by 422 (9 self)
 Add to MetaCart
, rather than approximates, the input points. Our algorithm is based on the threedimensional Voronoi diagram. Given a good program for this fundamental subroutine, the algorithm is quite easy to implement.
Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware
, 1999
"... We present a new approach for computing generalized 2D and 3D Voronoi diagrams using interpolationbased polygon rasterization hardware. We compute a discrete Voronoi diagram by rendering a three dimensional distance mesh for each Voronoi site. The polygonal mesh is a boundederror approximation of ..."
Abstract

Cited by 233 (26 self)
 Add to MetaCart
We present a new approach for computing generalized 2D and 3D Voronoi diagrams using interpolationbased polygon rasterization hardware. We compute a discrete Voronoi diagram by rendering a three dimensional distance mesh for each Voronoi site. The polygonal mesh is a boundederror approximation
Multiresolution Analysis of Arbitrary Meshes
, 1995
"... In computer graphics and geometric modeling, shapes are often represented by triangular meshes. With the advent of laser scanning systems, meshes of extreme complexity are rapidly becoming commonplace. Such meshes are notoriously expensive to store, transmit, render, and are awkward to edit. Multire ..."
Abstract

Cited by 605 (16 self)
 Add to MetaCart
In computer graphics and geometric modeling, shapes are often represented by triangular meshes. With the advent of laser scanning systems, meshes of extreme complexity are rapidly becoming commonplace. Such meshes are notoriously expensive to store, transmit, render, and are awkward to edit
The Lumigraph
 In Proceedings of SIGGRAPH 96
, 1996
"... This paper discusses a new method for capturing the complete appearanceof both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions. Unlike the shape capture process traditionally used ..."
Abstract

Cited by 1034 (43 self)
 Add to MetaCart
in computer vision and the rendering process traditionally used in computer graphics, our approach does not rely on geometric representations. Instead we sample and reconstruct a 4D function, which we call a Lumigraph. The Lumigraph is a subset of the complete plenoptic function that describes the flow
Face recognition: features versus templates
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1993
"... AbstractOver the last 20 years, several different techniques have been proposed for computer recognition of human faces. The purpose of this paper is to compare two simple but general strategies on a common database (frontal images of faces of 47 people: 26 males and 21 females, four images per per ..."
Abstract

Cited by 737 (25 self)
 Add to MetaCart
person). We have developed and implemented two new algorithms; the first one is based on the computation of a set of geometrical features, such as nose width and length, mouth position, and chin shape, and the second one is based on almostgreylevel template matching. The results obtained on the testing
The Voronoi Diagram
"... We present a graphics hardware implementation of the tangentplane algorithm for computing the kthorder Voronoi diagram of a set of point sites in image space. Correct and efficient implementation of this algorithm using graphics hardware is possible only with the use of an appropriate shader progr ..."
Abstract
 Add to MetaCart
to efficiently compute the distance transform of the given sites using the GPU, based on the firstorder Voronoi diagram.
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
, planning under uncertainty, sensorbased planning, visibility, decisiontheoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Results 1  10
of
336,831