### Table 1. Type II codes from the 16 skew Hadamard matrices of order 24

"... In PAGE 6: ... There exist at least three optimal [20; 10; 8] self-dual codes over GF(5), all of which are from Hadamard matrices of order 20, two being from skew Hadamard matrices of order 20. For more detail about these codes, see [22, Table1 , Remark 3]. 4.... In PAGE 6: ... We have checked that there are exactly six Type II codes from the 16 SH matrices, one of them is the extended Golay code G24 of length 24 and the other have minimum weight 4. For detail, see Table1 . Here the flrst column refers to the binary Type II codes from [15] and the second column refers to the indices of the skew Hadamard matrices in [21].... ..."

### Table 1: Binary codes of the 24 24 Hadamard matrices Code Hadamard Matrices

"... In PAGE 24: ... All of the six possible [24; 12] codes appeared. The results are given in Table1 , where the equivalence classes of matrices are as listed in [21], with 1; 2; ; 59 representing H1; H2; ; H59 and K representing the 60th class (found by Kimura). Also we use the notation of [33] for the six codes that occur.... ..."

### Table 1(Cont): The existence of OD(44; s1;s2). References [1] A.V.Geramita, and J.Seberry, Orthogonal designs: Quadratic forms and Hadamard matrices, Marcel Dekker, New York-Basel, 1979. [2] S. Georgiou, C.Koukouvinos, M.Mitrouli and J.Seberry, A new algorithm for computer searches for orthogonal designs, (in preparation). [3] C.Koukouvinos, M.Mitrouli and J.Seberry, Necessary and su cient conditions for some two variable orthogonal designs in order 44, JCMCC, to appear. [4] C.Koukouvinos, M.Mitrouli, J.Seberry, and P.Karabelas, On su cient conditions for some orthogonal designs and sequences with zero autocorrelation function, Australas. J. Combin., 13, (1996), 197-216. [5] C.Koukouvinos and Jennifer Seberry, New orthogonal designs and sequences with two and three variables in order 28, Ars Combinatoria, (to appear).

"... In PAGE 3: ... There are 484 possible 2?tuples. Table1 lists the 404 which correspond to designs which exist in order 44: 68 2-tuples correspond to designs eliminated by number theory (NE). For 12 cases, if the designs exist, they cannot be constructed using circulant matrices (Y).... In PAGE 4: ...s2 n 1 1 1 1 2 1 1 3 1 1 4 2 1 5 2 1 6 3 1 7 NE 1 8 3 1 9 3 1 10 3 1 11 3 1 12 4 1 13 5 1 14 5 1 15 NE 1 16 5 1 17 5 1 18 5 1 19 5 1 20 7 1 21 7 1 22 7 1 23 NE 1 24 7 1 25 7 1 26 9 1 27 7 1 28 NE 1 29 9 1 30 11 1 31 NE 1 32 9 1 33 9 1 34 11 1 35 11 1 36 11 1 37 11 1 38 11 1 39 NE 1 40 11 1 41 11 1 42 NE 1 43 11 2 2 1 2 3 2 2 4 2 2 5 3 2 6 2 2 7 3 2 8 3 2 9 5 s1 s2 n 2 10 3 2 11 5 2 12 5 2 13 5 2 14 NE 2 15 5 2 16 5 2 17 5 2 18 5 2 19 7 2 20 6 2 21 7 2 22 7 2 23 7 2 24 7 2 25 9 2 26 7 2 27 9 2 28 8 2 29 9 2 30 NE 2 31 9 2 32 9 2 33 9 2 34 9 2 35 10 2 36 10; 11 2 37 11 2 38 10; 11 2 39 11 2 40 11 2 41 P 2 42 11 3 3 2 3 4 3 3 5 NE 3 6 3 3 7 3 3 8 3 3 9 3 3 10 5 3 11 5 3 12 5 3 13 NE 3 14 5 3 15 5 3 16 7 3 17 5 3 18 7 3 19 7 3 20 NE s1 s2 n 3 21 NE 3 22 7 3 23 7 3 24 7 3 25 7 3 26 9 3 27 9 3 28 9 3 29 NE 3 30 9 3 31 10 3 32 9 3 33 9 3 34 10 3 35 11 3 36 11 3 37 NE 3 38 11 3 39 11 3 40 NE 3 41 11 4 4 2 4 5 3 4 6 3 4 7 NE 4 8 3 4 9 5 4 10 5 4 11 5 4 12 5 4 13 5 4 14 5 4 15 NE 4 16 5 4 17 7 4 18 7 4 19 7 4 20 7 4 21 7 4 22 7 4 23 NE 4 24 7 4 25 9 4 26 8 4 27 9 4 28 NE 4 29 9 4 30 9 4 31 NE 4 32 9 4 33 10 s1 s2 n 4 34 10 4 35 11 4 36 10; 11 4 37 P 4 38 11 4 39 NE 4 40 11 5 5 3 5 6 3 5 7 3 5 8 5 5 9 5 5 10 5 5 11 NE 5 12 NE 5 13 5 5 14 5 5 15 5 5 16 7 5 17 7 5 18 7 5 19 NE 5 20 7 5 21 7 5 22 9 5 23 7 5 24 9 5 25 9 5 26 9 5 27 NE 5 28 9 5 29 9 5 30 10 5 31 9 5 32 10 5 33 10 5 34 P 5 35 NE 5 36 11 5 37 11 5 38 Y 5 39 11 6 6 3 6 7 5 6 8 5 6 9 5 6 10 NE 6 11 5 6 12 5 6 13 7 6 14 5 s1 s2 n 6 15 7 6 16 7 6 17 7 6 18 7 6 19 7 6 20 7 6 21 7 6 22 7 6 23 9 6 24 8 6 25 9 6 26 NE 6 27 9 6 28 9 6 29 P 6 30 9 6 31 10 6 32 10 6 33 P;20 6 34 10 6 35 P 6 36 11 6 37 Y 6 38 11 7 7 4 7 8 6 7 9 NE 7 10 5 7 11 7 7 12 7 7 13 5 7 14 7 7 15 7 7 16 NE 7 17 NE 7 18 7 7 19 8 7 20 9 7 21 7 7 22 9 7 23 9 7 24 9 7 25 NE 7 26 9 7 27 9 7 28 NE 7 29 9 7 30 P 7 31 10 7 32 11 7 33 NE s1 s2 n 7 34 P 7 35 P 7 36 NE 7 37 11 8 8 5 8 9 5 8 10 5 8 11 5 8 12 5 8 13 7 8 14 NE 8 15 7 8 16 7 8 17 7 8 18 7 8 19 9 8 20 7 8 21 9 8 22 8 8 23 9 8 24 9 8 25 9 8 26 9 8 27 P 8 28 9 8 29 P 8 30 NE 8 31 P 8 32 10 8 33 P 8 34 11 8 35 Y 8 36 11 9 9 5 9 10 5 9 11 5 9 12 7 9 13 6 9 14 7 9 15 NE 9 16 7 9 17 7 9 18 7 9 19 7 9 20 9 9 21 9 9 22 9 9 23 NE 9 24 9 9 25 9 9 26 9 Table1 : The existence of OD(44; s1;s2).... ..."

### Table 1. The 6 codes associated with the 60 Hadamard matrices of order 24.

2007

"... In PAGE 17: ...2, Assmus and Key classified the 60 H-classes according to the doubly-even binary codes associated to the columns of the matrices. (See Table1 in [3] or Table 7.1 in [2], but beware that 4232 D , listed with the code D, should be listed with the code C, and that 3242 D in line 3 of the table should be changed to 3242 C .... ..."

### Table 6: A skew Hadamard matrix of order 4t = 2q means a W(4q; 4q ? 2) and a W(4q; 2q ? 1) exist. Table 7.1 of [32] is used.

"... In PAGE 12: ... 6 Existence of W (4n; 4n ? 2) and W (4n; 2n ? 1) For n odd we use Table 5 with the results noted as ci where Theorem 3, Corollary 2 has been used. We also consider, in Table6 , existence for even numbers 2t where t 500. This leaves the following values lt; 1000 to consider: (i) q = 4 t, with t = 1, : : : , 125; (ii) q = 8 t, with t = 1, : : : , 61; (iii) q = 2s t, with s 0, t = 1, : : : , r, where r = h 1000 2s+2 ti or h 1000 2s+2 ti ? 1 whichever is odd.... ..."

### Table 2 Test matrices.

1998

"... In PAGE 19: ...0. Numerical results. In this section, we present numerical results of our new algorithms and compare them with existing algorithms. A variety of tridiagonal matrices listed in Table2 forms our test-bed. The matrices of type 2{5 were obtained by Householder reduction of a random dense symmetric matrix that had the desired... ..."

Cited by 9

### Table 7: Comparison of our program chD with existing implementations.

1998

"... In PAGE 16: ... On the other hand, by Hadamard apos;s bound we must use 5 primes, whose product is at least 1045, hence allowing for a maximum absolute value of 5 1044. Table7 compares our program chD to Quickhull [BDH93] and Clarkson apos;s code [Cla92, CMS93]; the latter is always run with the option to insert points in a random order. In the table, d; n represent the dimension and number of points.... ..."

Cited by 23

### Table 1: O/D matrices

"... In PAGE 17: ...The transportation scenarios were based on existing origin-destination (O/D) matrices ( Table1 .) for peak hours and/or daily average traffic.... ..."