Results 1 - 10
of
314,709
Good Error-Correcting Codes based on Very Sparse Matrices
, 1999
"... We study two families of error-correcting codes defined in terms of very sparse matrices. "MN" (MacKay--Neal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract
-
Cited by 741 (23 self)
- Add to MetaCart
We study two families of error-correcting codes defined in terms of very sparse matrices. "MN" (MacKay--Neal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties
DART: Directed automated random testing
- In Programming Language Design and Implementation (PLDI
, 2005
"... We present a new tool, named DART, for automatically testing software that combines three main techniques: (1) automated extraction of the interface of a program with its external environment using static source-code parsing; (2) automatic generation of a test driver for this interface that performs ..."
Abstract
-
Cited by 823 (41 self)
- Add to MetaCart
techniques constitute Directed Automated Random Testing,or DART for short. The main strength of DART is thus that testing can be performed completely automatically on any program that compiles – there is no need to write any test driver or harness code. During testing, DART detects standard errors
Iterative decoding of binary block and convolutional codes
- IEEE Trans. Inform. Theory
, 1996
"... Abstract- Iterative decoding of two-dimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using log-likelihood algebra, we show that any decoder can he used which accepts soft inputs-including a priori values-and delivers soft outputs that can he split into three terms: the ..."
Abstract
-
Cited by 600 (43 self)
- Add to MetaCart
Abstract- Iterative decoding of two-dimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using log-likelihood algebra, we show that any decoder can he used which accepts soft inputs-including a priori values-and delivers soft outputs that can he split into three terms
Network Coding for Large Scale Content Distribution
"... We propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling of bloc ..."
Abstract
-
Cited by 497 (6 self)
- Add to MetaCart
-riding are in place. We demonstrate through simulations of scenarios of practical interest that the expected file download time improves by more than 20-30 % with network coding compared to coding at the server only and, by more than 2-3 times compared to sending unencoded information. Moreover, we show that network
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract
-
Cited by 958 (5 self)
- Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and state-of-the-art `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
Pseudo-Random Generation from One-Way Functions
- PROC. 20TH STOC
, 1988
"... Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a one-way function from a pseudorandom generator, this result shows that there is a pseudorandom gene ..."
Abstract
-
Cited by 887 (22 self)
- Add to MetaCart
Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a one-way function from a pseudorandom generator, this result shows that there is a pseudorandom generator iff there is a one-way function.
SEAD: Secure Efficient Distance Vector Routing for Mobile Wireless Ad Hoc Networks
, 2003
"... An ad hoc network is a collection of wireless computers (nodes), communicating among themselves over possibly multihop paths, without the help of any infrastructure such as base stations or access points. Although many previous ad hoc network routing protocols have been based in part on distance vec ..."
Abstract
-
Cited by 522 (8 self)
- Add to MetaCart
vector approaches, they have generally assumed a trusted environment. In this paper, we design and evaluate the Secure Efficient Ad hoc Distance vector routing protocol (SEAD), a secure ad hoc network routing protocol based on the design of the Destination-Sequenced Distance-Vector routing protocol
Results 1 - 10
of
314,709