Results 1  10
of
1,371,917
Numbering matters: Firstorder canonical forms for secondorder recursive types
 In Proceedings of the 2004 ACM SIGPLAN International Conference on Functional Programming (ICFP’04
, 2004
"... We study a type system equipped with universal types and equirecursive types, which we refer to as Fµ. We show that type equality may be decided in time O(n log n), an improvement over the previous known bound of O(n 2). In fact, we show that two more general problems, namely entailment of type equa ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
equations and type unification, may be decided in time O(n log n), a new result. To achieve this bound, we associate, with every Fµ type, a firstorder canonical form, which may be computed in time O(n log n). By exploiting this notion, we reduce all three problems to equality and unification of firstorder
An Analysis of FirstOrder Logics of Probability
 Artificial Intelligence
, 1990
"... : We consider two approaches to giving semantics to firstorder logics of probability. The first approach puts a probability on the domain, and is appropriate for giving semantics to formulas involving statistical information such as "The probability that a randomly chosen bird flies is greater ..."
Abstract

Cited by 316 (18 self)
 Add to MetaCart
: We consider two approaches to giving semantics to firstorder logics of probability. The first approach puts a probability on the domain, and is appropriate for giving semantics to formulas involving statistical information such as "The probability that a randomly chosen bird flies
SecondOrder Cone Programming
 MATHEMATICAL PROGRAMMING
, 2001
"... In this paper we survey the second order cone programming problem (SOCP). First we present several applications of the problem in various areas of engineering and robust optimization problems. We also give examples of optimization problems that can be cast as SOCPs. Next we review an algebraic struc ..."
Abstract

Cited by 231 (11 self)
 Add to MetaCart
In this paper we survey the second order cone programming problem (SOCP). First we present several applications of the problem in various areas of engineering and robust optimization problems. We also give examples of optimization problems that can be cast as SOCPs. Next we review an algebraic
A firstorder primaldual algorithm for convex problems with applications to imaging
, 2010
"... In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering in this paper ..."
Abstract

Cited by 435 (20 self)
 Add to MetaCart
In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering
A Transformation System for Developing Recursive Programs
, 1977
"... A system of rules for transforming programs is described, with the programs in the form of recursion equations An initially very simple, lucid. and hopefully correct program IS transformed into a more efficient one by altering the recursion structure Illustrative examples of program transformations ..."
Abstract

Cited by 653 (3 self)
 Add to MetaCart
A system of rules for transforming programs is described, with the programs in the form of recursion equations An initially very simple, lucid. and hopefully correct program IS transformed into a more efficient one by altering the recursion structure Illustrative examples of program transformations
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 546 (25 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
Subtyping recursive types
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1993
"... We investigate the interactions of subtyping and recursive types, in a simply typed λcalculus. The two fundamental questions here are whether two (recursive) types are in the subtype relation, and whether a term has a type. To address the first question, we relate various definitions of type equiva ..."
Abstract

Cited by 330 (8 self)
 Add to MetaCart
We investigate the interactions of subtyping and recursive types, in a simply typed λcalculus. The two fundamental questions here are whether two (recursive) types are in the subtype relation, and whether a term has a type. To address the first question, we relate various definitions of type
Recursive Distributed Representations
 Artificial Intelligence
, 1990
"... A longstanding difficulty for connectionist modeling has been how to represent variablesized recursive data structures, such as trees and lists, in fixedwidth patterns. This paper presents a connectionist architecture which automatically develops compact distributed representations for such compo ..."
Abstract

Cited by 409 (9 self)
 Add to MetaCart
A longstanding difficulty for connectionist modeling has been how to represent variablesized recursive data structures, such as trees and lists, in fixedwidth patterns. This paper presents a connectionist architecture which automatically develops compact distributed representations
Results 1  10
of
1,371,917