Results 1  10
of
98,576
The selfduality equations on a Riemann surface
 Proc. Lond. Math. Soc., III. Ser
, 1987
"... In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instanton ..."
Abstract

Cited by 524 (6 self)
 Add to MetaCart
In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled &apos
with generalized invexity
, 2005
"... The concept of symmetric duality for multiobjective fractional problems has been In mathematical programming, a pair of primal and dual problems is called symmetric if the dual of the dual is the primal problem; that is, if the dual problem is expressed in the form of the primal problem, then its du ..."
Abstract
 Add to MetaCart
The concept of symmetric duality for multiobjective fractional problems has been In mathematical programming, a pair of primal and dual problems is called symmetric if the dual of the dual is the primal problem; that is, if the dual problem is expressed in the form of the primal problem, then its
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
to the separation of the geometrical and topological aspects of the problem and to the use of two simple but powerful primitives, a geometric predicate and an operator for manipulating the topology of the diagram. The topology is represented by a new data structure for generalized diagrams, that is, embeddings
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual
A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
 PSYCHOLOGICAL REVIEW
, 1997
"... How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis (LS ..."
Abstract

Cited by 1772 (10 self)
 Add to MetaCart
rate to schoolchildren. LSA uses no prior linguistic or perceptual similarity knowledge; it is based solely on a general mathematical learning method that achieves powerful inductive effects by extracting the right number of dimensions (e.g., 300) to represent objects and contexts. Relations to other
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 801 (8 self)
 Add to MetaCart
counterpart. We obtain a new perspective on noncommutative gauge theory on a torus, its Tduality, and Morita equivalence. We also discuss the D0/D4 system, the relation to Mtheory in DLCQ, and a possible noncommutative version of the sixdimensional (2, 0) theory. 8/99
Results 1  10
of
98,576