Results 1 - 10
of
682,809
Estimating the number of clusters in a dataset via the Gap statistic
, 2000
"... We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. k-means or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference ..."
Abstract
-
Cited by 492 (1 self)
- Add to MetaCart
We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. k-means or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference
CURE: An Efficient Clustering Algorithm for Large Data sets
- Published in the Proceedings of the ACM SIGMOD Conference
, 1998
"... Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering ..."
Abstract
-
Cited by 713 (5 self)
- Add to MetaCart
Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new
On Spectral Clustering: Analysis and an algorithm
- ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods -- algorithms that cluster points using eigenvectors of matrices derived from the distances between the points -- there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract
-
Cited by 1697 (13 self)
- Add to MetaCart
Despite many empirical successes of spectral clustering methods -- algorithms that cluster points using eigenvectors of matrices derived from the distances between the points -- there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors
A density-based algorithm for discovering clusters in large spatial databases with noise
, 1996
"... Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clu ..."
Abstract
-
Cited by 1722 (69 self)
- Add to MetaCart
of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, we present the new clustering algorithm DBSCAN relying on a density-based notion of clusters which is designed to discover
Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews
, 2002
"... This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs. A ..."
Abstract
-
Cited by 741 (5 self)
- Add to MetaCart
This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs
FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets
, 1995
"... A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in k-d space, using k feature-extraction functions, provided by a domain expert [25]. Thus, we can subsequently use highly fine-tuned spatial access methods (SAMs), to answer several types ..."
Abstract
-
Cited by 497 (23 self)
- Add to MetaCart
domain expert to assess the similarity/distance of two objects. Given only the distance information though, it is not obvious how to map objects into points. This is exactly the topic of this paper. We describe a fast algorithm to map objects into points in some k-dimensional space (k is user
BIRCH: an efficient data clustering method for very large databases
- In Proc. of the ACM SIGMOD Intl. Conference on Management of Data (SIGMOD
, 1996
"... Finding useful patterns in large datasets has attracted considerable interest recently, and one of the most widely st,udied problems in this area is the identification of clusters, or deusel y populated regions, in a multi-dir nensional clataset. Prior work does not adequately address the problem of ..."
Abstract
-
Cited by 557 (2 self)
- Add to MetaCart
Finding useful patterns in large datasets has attracted considerable interest recently, and one of the most widely st,udied problems in this area is the identification of clusters, or deusel y populated regions, in a multi-dir nensional clataset. Prior work does not adequately address the problem
Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections
, 1992
"... Document clustering has not been well received as an information retrieval tool. Objections to its use fall into two main categories: first, that clustering is too slow for large corpora (with running time often quadratic in the number of documents); and second, that clustering does not appreciably ..."
Abstract
-
Cited by 772 (12 self)
- Add to MetaCart
Document clustering has not been well received as an information retrieval tool. Objections to its use fall into two main categories: first, that clustering is too slow for large corpora (with running time often quadratic in the number of documents); and second, that clustering does not appreciably
Large Margin Classification Using the Perceptron Algorithm
- Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leave-one-out method. Like Vapnik 's maximal-margin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract
-
Cited by 518 (2 self)
- Add to MetaCart
We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leave-one-out method. Like Vapnik 's maximal-margin classifier, our algorithm takes advantage of data that are linearly separable
GPFS: A Shared-Disk File System for Large Computing Clusters
- In Proceedings of the 2002 Conference on File and Storage Technologies (FAST
, 2002
"... GPFS is IBM's parallel, shared-disk file system for cluster computers, available on the RS/6000 SP parallel supercomputer and on Linux clusters. GPFS is used on many of the largest supercomputers in the world. GPFS was built on many of the ideas that were developed in the academic community ove ..."
Abstract
-
Cited by 518 (3 self)
- Add to MetaCart
existing ideas scaled well, new approaches were necessary in many key areas. This paper describes GPFS, and discusses how distributed locking and recovery techniques were extended to scale to large clusters.
Results 1 - 10
of
682,809