Results 1  10
of
11,827
Representing twentieth century spacetime climate variability, part 1: development of a 196190 mean monthly terrestrial climatology
 Journal of Climate
, 1999
"... The construction of a 0.58 lat 3 0.58 long surface climatology of global land areas, excluding Antarctica, is described. The climatology represents the period 1961–90 and comprises a suite of nine variables: precipitation, wetday frequency, mean temperature, diurnal temperature range, vapor pressur ..."
Abstract

Cited by 581 (13 self)
 Add to MetaCart
The construction of a 0.58 lat 3 0.58 long surface climatology of global land areas, excluding Antarctica, is described. The climatology represents the period 1961–90 and comprises a suite of nine variables: precipitation, wetday frequency, mean temperature, diurnal temperature range, vapor
From frequency to meaning : Vector space models of semantics
 Journal of Artificial Intelligence Research
, 2010
"... Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are begi ..."
Abstract

Cited by 347 (3 self)
 Add to MetaCart
Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics
The Vector Field Histogram  Fast Obstacle Avoidance For Mobile Robots
 IEEE JOURNAL OF ROBOTICS AND AUTOMATION
, 1991
"... A new realtime obstacle avoidance method for mobile robots has been developed and implemented. This method, named the vector field histogram(VFH), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward the target. The VFH method uses a ..."
Abstract

Cited by 484 (24 self)
 Add to MetaCart
A new realtime obstacle avoidance method for mobile robots has been developed and implemented. This method, named the vector field histogram(VFH), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward the target. The VFH method uses
From Few to many: Illumination cone models for face recognition under variable lighting and pose
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a generative appearancebased method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a smal ..."
Abstract

Cited by 754 (12 self)
 Add to MetaCart
conditions. The pose space is then sampled, and for each pose the corresponding illumination cone is approximated by a lowdimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated
Computing semantic relatedness using Wikipediabased explicit semantic analysis
 In Proceedings of the 20th International Joint Conference on Artificial Intelligence
, 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of commonsense and domainspecific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a highdimensional space of concepts derived from Wikipedi ..."
Abstract

Cited by 562 (9 self)
 Add to MetaCart
Wikipedia. We use machine learning techniques to explicitly represent the meaning of any text as a weighted vector of Wikipediabased concepts. Assessing the relatedness of texts in this space amounts to comparing the corresponding vectors using conventional metrics (e.g., cosine). Compared
Maximum Likelihood Linear Transformations for HMMBased Speech Recognition
 COMPUTER SPEECH AND LANGUAGE
, 1998
"... This paper examines the application of linear transformations for speaker and environmental adaptation in an HMMbased speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Other than in the form of a simple bias ..."
Abstract

Cited by 570 (68 self)
 Add to MetaCart
bias, strict linear featurespace transformations are inappropriate in this case. Hence, only modelbased linear transforms are considered. The paper compares the two possible forms of modelbased transforms: (i) unconstrained, where any combination of mean and variance transform may be used, and (ii
Fast and robust fixedpoint algorithms for independent component analysis
 IEEE TRANS. NEURAL NETW
, 1999
"... Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informat ..."
Abstract

Cited by 884 (34 self)
 Add to MetaCart
, and estimation of individual independent components as projection pursuit directions. The statistical properties of the estimators based on such contrast functions are analyzed under the assumption of the linear mixture model, and it is shown how to choose contrast functions that are robust and/or of minimum
The Dantzig selector: statistical estimation when p is much larger than n
, 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract

Cited by 879 (14 self)
 Add to MetaCart
, where r is the residual vector y − A˜x and t is a positive scalar. We show that if A obeys a uniform uncertainty principle (with unitnormed columns) and if the true parameter vector x is sufficiently sparse (which here roughly guarantees that the model is identifiable), then with very large probability
Maxmargin Markov networks
, 2003
"... In typical classification tasks, we seek a function which assigns a label to a single object. Kernelbased approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ..."
Abstract

Cited by 604 (15 self)
 Add to MetaCart
independently to each object, losing much useful information. Conversely, probabilistic graphical models, such as Markov networks, can represent correlations between labels, by exploiting problem structure, but cannot handle highdimensional feature spaces, and lack strong theoretical generalization guarantees
Quicktime VR  an imagebased approach to virtual environment navigation.
 In SIGGRAPH 95 Conference Proceedings,
, 1995
"... ABSTRACT Traditionally, virtual reality systems use 3D computer graphics to model and render virtual environments in realtime. This approach usually requires laborious modeling and expensive special purpose rendering hardware. The rendering quality and scene complexity are often limited because of ..."
Abstract

Cited by 527 (0 self)
 Add to MetaCart
ABSTRACT Traditionally, virtual reality systems use 3D computer graphics to model and render virtual environments in realtime. This approach usually requires laborious modeling and expensive special purpose rendering hardware. The rendering quality and scene complexity are often limited because
Results 1  10
of
11,827