Results 1  10
of
1,568,047
A new learning algorithm for blind signal separation

, 1996
"... A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract

Cited by 614 (80 self)
 Add to MetaCart
A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 839 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
Fast Algorithms for Mining Association Rules
, 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract

Cited by 3540 (15 self)
 Add to MetaCart
We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known
The adaptive LASSO and its oracle properties
 Journal of the American Statistical Association
"... The lasso is a popular technique for simultaneous estimation and variable selection. Lasso variable selection has been shown to be consistent under certain conditions. In this work we derive a necessary condition for the lasso variable selection to be consistent. Consequently, there exist certain sc ..."
Abstract

Cited by 649 (10 self)
 Add to MetaCart
scenarios where the lasso is inconsistent for variable selection. We then propose a new version of the lasso, called the adaptive lasso, where adaptive weights are used for penalizing different coefficients in the!1 penalty. We show that the adaptive lasso enjoys the oracle properties; namely, it performs
EntropyBased Algorithms For Best Basis Selection
 IEEE Transactions on Information Theory
, 1992
"... pretations (position, frequency, and scale), and we have experimented with featureextraction methods that use bestbasis compression for frontend complexity reduction. The method relies heavily on the remarkable orthogonality properties of the new libraries. It is obviously a nonlinear transformat ..."
Abstract

Cited by 665 (20 self)
 Add to MetaCart
pretations (position, frequency, and scale), and we have experimented with featureextraction methods that use bestbasis compression for frontend complexity reduction. The method relies heavily on the remarkable orthogonality properties of the new libraries. It is obviously a nonlinear
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2033 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
A comparison and evaluation of multiview stereo reconstruction algorithms
 In IEEE CVPR
, 2006
"... This paper presents a quantitative comparison of several multiview stereo reconstruction algorithms. Until now, the lack of suitable calibrated multiview image datasets with known ground truth (3D shape models) has prevented such direct comparisons. In this paper, we rst survey multiview stereo a ..."
Abstract

Cited by 527 (14 self)
 Add to MetaCart
algorithms and compare them qualitatively using a taxonomy that differentiates their key properties. We then describe our process for acquiring and calibrating multiview image datasets with highaccuracy ground truth and introduce our evaluation methodology. Finally, we present the results of our
Fast and robust fixedpoint algorithms for independent component analysis
 IEEE TRANS. NEURAL NETW
, 1999
"... Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informat ..."
Abstract

Cited by 858 (33 self)
 Add to MetaCart
informationtheoretic approach and the projection pursuit approach. Using maximum entropy approximations of differential entropy, we introduce a family of new contrast (objective) functions for ICA. These contrast functions enable both the estimation of the whole decomposition by minimizing mutual information
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
, 2001
"... Variable selection is fundamental to highdimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized ..."
Abstract

Cited by 903 (60 self)
 Add to MetaCart
functions are symmetric, nonconcave on (0, ∞), and have singularities at the origin to produce sparse solutions. Furthermore, the penalty functions should be bounded by a constant to reduce bias and satisfy certain conditions to yield continuous solutions. A new algorithm is proposed for optimizing
High performance scalable image compression with EBCOT
 IEEE Trans. Image Processing
, 2000
"... A new image compression algorithm is proposed, based on independent Embedded Block Coding with Optimized Truncation of the embedded bitstreams (EBCOT). The algorithm exhibits stateoftheart compression performance while producing a bitstream with a rich feature set, including resolution and SNR ..."
Abstract

Cited by 577 (11 self)
 Add to MetaCart
A new image compression algorithm is proposed, based on independent Embedded Block Coding with Optimized Truncation of the embedded bitstreams (EBCOT). The algorithm exhibits stateoftheart compression performance while producing a bitstream with a rich feature set, including resolution and SNR
Results 1  10
of
1,568,047