Results 1  10
of
120,800
Genetic Programming
, 1997
"... Introduction Genetic programming is a domainindependent problemsolving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring ..."
Abstract

Cited by 1051 (12 self)
 Add to MetaCart
Introduction Genetic programming is a domainindependent problemsolving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring
Evolving Neural Networks through Augmenting Topologies
 Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning task ..."
Abstract

Cited by 524 (113 self)
 Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 396 (33 self)
 Add to MetaCart
Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead
Parallel Networks that Learn to Pronounce English Text
 COMPLEX SYSTEMS
, 1987
"... This paper describes NETtalk, a class of massivelyparallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed h ..."
Abstract

Cited by 548 (5 self)
 Add to MetaCart
This paper describes NETtalk, a class of massivelyparallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described, 1
Learning to rank using gradient descent
 In ICML
, 2005
"... We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data f ..."
Abstract

Cited by 510 (17 self)
 Add to MetaCart
We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data
A theory of memory retrieval
 PSYCHOL. REV
, 1978
"... A theory of memory retrieval is developed and is shown to apply over a range of experimental paradigms. Access to memory traces is viewed in terms of a resonance metaphor. The probe item evokes the search set on the basis of probememory item relatedness, just as a ringing tuning fork evokes sympath ..."
Abstract

Cited by 728 (81 self)
 Add to MetaCart
) and to speedaccuracy paradigms; results are found to provide a basis for comparison of these paradigms. It is noted that neural network models can be interfaced to the retrieval theory with little difficulty and that semantic memory models may benefit from such a retrieval scheme.
The Advantages of Evolutionary Computation
, 1997
"... Evolutionary computation is becoming common in the solution of difficult, realworld problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific ..."
Abstract

Cited by 536 (6 self)
 Add to MetaCart
advantages include the flexibility of the procedures, as well as the ability to selfadapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine. 1 Introduction Darwinian evolution is intrinsically a robust search
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
likelihoods, marginal probabilities and most probable configurations. We describe how a wide varietyof algorithms — among them sumproduct, cluster variational methods, expectationpropagation, mean field methods, maxproduct and linear programming relaxation, as well as conic programming relaxations — can
Results 1  10
of
120,800