Results 1  10
of
2,317,056
Evolving Neural Networks through Augmenting Topologies
 Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning task ..."
Abstract

Cited by 524 (113 self)
 Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning
Footprint evaluation for volume rendering
 Computer Graphics
, 1990
"... This paper presents a forward mapping rendering algorithm to display regular volumetric grids that may not have the same spacings in the three grid directions. It takes advantage of the fact that convolution can be thought of as distributing energy from input samples into space. The renderer calcul ..."
Abstract

Cited by 504 (1 self)
 Add to MetaCart
This paper presents a forward mapping rendering algorithm to display regular volumetric grids that may not have the same spacings in the three grid directions. It takes advantage of the fact that convolution can be thought of as distributing energy from input samples into space. The renderer calculates an image plane footprint for each data sample and uses the footprint to spread the sample's energy onto the image plane. A result of the technique is that the forward mapping algorithm can support perspective without excessive cost, and support adaptive resampling of the threedimensional data set during image generation.
A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
, 1989
"... The exact form of a gradientfollowing learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage that they do not require a precis ..."
Abstract

Cited by 529 (4 self)
 Add to MetaCart
precisely defined training interval, operating while the network runs; and (2) the disadvantage that they require nonlocal communication in the network being trained and are computationally expensive. These algorithms are shown to allow networks having recurrent connections to learn complex tasks requiring
FAST VOLUME RENDERING USING A SHEARWARP FACTORIZATION OF THE VIEWING TRANSFORMATION
, 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that req ..."
Abstract

Cited by 541 (2 self)
 Add to MetaCart
Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Los Alamos Scientific Laboratory report
"... Several methods have been previously used to approximate free boundaries in tinitedifference numerical simulations. A simple, but powerful, method is described that is based on the concept of a fractional volume of fluid (VOF). This method is shown to be more flexible and efftcient than other method ..."
Abstract

Cited by 544 (2 self)
 Add to MetaCart
Several methods have been previously used to approximate free boundaries in tinitedifference numerical simulations. A simple, but powerful, method is described that is based on the concept of a fractional volume of fluid (VOF). This method is shown to be more flexible and efftcient than other
Volume Rendering
, 1988
"... A technique for rendering images Of volumes containing mixtures of materials is presented. The shading model allows both the interior of a material and the boundary between materials to be colored. Image projection is performed by simulating the absorption of light along the ray path to the eye. The ..."
Abstract

Cited by 446 (2 self)
 Add to MetaCart
A technique for rendering images Of volumes containing mixtures of materials is presented. The shading model allows both the interior of a material and the boundary between materials to be colored. Image projection is performed by simulating the absorption of light along the ray path to the eye
MultiModal Volume Registration by Maximization of Mutual Information
, 1996
"... A new informationtheoretic approach is presented for finding the registration of volumetric medical images of differing modalities. Registration is achieved by adjustment of the relative pose until the mutual information between images is maximized. In our derivation of the registration procedure, ..."
Abstract

Cited by 459 (23 self)
 Add to MetaCart
are presented that demonstrate the approach registering magnetic resonance (MR) images with comput...
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a
Complete discrete 2D Gabor transforms by neural networks for image analysis and compression
, 1988
"... AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which provide ..."
Abstract

Cited by 475 (8 self)
 Add to MetaCart
AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which
Improved prediction of signal peptides  SignalP 3.0
 J. MOL. BIOL.
, 2004
"... We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea that the cle ..."
Abstract

Cited by 655 (7 self)
 Add to MetaCart
We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea
Results 1  10
of
2,317,056