Results 1  10
of
139,283
NETWORKBASED VERTEX DISSOLUTION
, 2015
"... We introduce a graphtheoretic vertex dissolution model that applies to a number of redistribution scenarios, such as gerrymandering in political districting or work balancing in an online situation. The central aspect of our model is the deletion of certain vertices and the redistribution of thei ..."
Abstract
 Add to MetaCart
We introduce a graphtheoretic vertex dissolution model that applies to a number of redistribution scenarios, such as gerrymandering in political districting or work balancing in an online situation. The central aspect of our model is the deletion of certain vertices and the redistribution
NetworkBased Dissolution
, 2014
"... We introduce a graphtheoretic dissolution model that applies to a number of redistribution scenarios such as gerrymandering in political districting or work balancing in an online situation. The central aspect of our model is the deletion of certain vertices and the redistribution of their loads t ..."
Abstract
 Add to MetaCart
We introduce a graphtheoretic dissolution model that applies to a number of redistribution scenarios such as gerrymandering in political districting or work balancing in an online situation. The central aspect of our model is the deletion of certain vertices and the redistribution of their loads
A new approach to the maximum flow problem
 JOURNAL OF THE ACM
, 1988
"... All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract

Cited by 672 (34 self)
 Add to MetaCart
All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based
Routing Techniques in Wireless Sensor Networks: A Survey
 IEEE Wireless Communications
, 2004
"... Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus, howeve ..."
Abstract

Cited by 704 (2 self)
 Add to MetaCart
survey of different routing techniques. Overall, the routing techniques are classified into three categories based on the underlying network structure: flat, hierarchical, and locationbased routing. Furthermore, these protocols can be classified into multipathbased, querybased, negotiationbased, QoSbased
SEAD: Secure Efficient Distance Vector Routing for Mobile Wireless Ad Hoc Networks
, 2003
"... An ad hoc network is a collection of wireless computers (nodes), communicating among themselves over possibly multihop paths, without the help of any infrastructure such as base stations or access points. Although many previous ad hoc network routing protocols have been based in part on distance vec ..."
Abstract

Cited by 522 (8 self)
 Add to MetaCart
An ad hoc network is a collection of wireless computers (nodes), communicating among themselves over possibly multihop paths, without the help of any infrastructure such as base stations or access points. Although many previous ad hoc network routing protocols have been based in part on distance
Constraint Networks
, 1992
"... Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract

Cited by 1149 (43 self)
 Add to MetaCart
Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 788 (23 self)
 Add to MetaCart
restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible
Dryad: Distributed DataParallel Programs from Sequential Building Blocks
 In EuroSys
, 2007
"... Dryad is a generalpurpose distributed execution engine for coarsegrain dataparallel applications. A Dryad application combines computational “vertices ” with communication “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set of availa ..."
Abstract

Cited by 730 (27 self)
 Add to MetaCart
Dryad is a generalpurpose distributed execution engine for coarsegrain dataparallel applications. A Dryad application combines computational “vertices ” with communication “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set of available computers, communicating as appropriate through files, TCP pipes, and sharedmemory FIFOs. The vertices provided by the application developer are quite simple and are usually written as sequential programs with no thread creation or locking. Concurrency arises from Dryad scheduling vertices to run simultaneously on multiple computers, or on multiple CPU cores within a computer. The application can discover the size and placement of data at run time, and modify the graph as the computation progresses to make efficient use of the available resources. Dryad is designed to scale from powerful multicore single computers, through small clusters of computers, to data centers with thousands of computers. The Dryad execution engine handles all the difficult problems of creating a large distributed, concurrent application: scheduling the use of computers and their CPUs, recovering from communication or computer failures, and transporting data between vertices.
Results 1  10
of
139,283